Psychosocial Needs of Gynecological Cancer Survivors: Mixed Methods Study

Author:

Adams Elizabeth JORCID,Tallman DavidORCID,Haynam Marcy LORCID,Nekhlyudov LarissaORCID,Lustberg Maryam BORCID

Abstract

Background Internet and social media platforms offer insights into the lived experiences of survivors of cancer and their caregivers; however, the volume of narrative data available is often cumbersome for thorough analysis. Survivors of gynecological cancer have unique needs, such as those related to a genetic predisposition to future cancers, impact of cancer on sexual health, the advanced stage at which many are diagnosed, and the influx of new therapeutic approaches. Objective This study aimed to present a unique methodology to leverage large amounts of data from internet-based platforms for mixed methods analysis. We analyzed discussion board posts made by survivors of gynecological cancer on the American Cancer Society website with a particular interest in evaluating the psychosocial aspects of survivorship. Methods All posts from the ovarian, uterine, and gynecological cancers (other than ovarian and uterine) discussion boards on the American Cancer Society Cancer Survivors Network were included. Posts were web scraped using Python and organized by psychosocial themes described in the Quality of Cancer Survivorship Care Framework. Keywords related to each theme were generated and verified. Keywords identified posts related to the predetermined psychosocial themes. Quantitative analysis was completed using Python and R Foundation for Statistical Computing packages. Qualitative analysis was completed on a subset of posts as a proof of concept. Themes discovered through latent Dirichlet allocation (LDA), an unsupervised topic modeling technique, were assessed and compared with the predetermined themes of interest. Results A total of 125,498 posts made by 6436 survivors of gynecological cancer and caregivers between July 2000 and February 2020 were evaluated. Of the 125,489 posts, 23,458 (18.69%) were related to the psychosocial experience of cancer and were included in the mixed methods psychosocial analysis. Quantitative analysis (23,458 posts) revealed that survivors across all gynecological cancer discussion boards most frequently discussed the role of friends and family in care, as well as fatigue, the effect of cancer on interpersonal relationships, and health insurance status. Words related to psychosocial aspects of survivorship most often used in posts included “family,” “hope,” and “help.” Qualitative analysis (20 of the 23,458 posts) similarly demonstrated that survivors frequently discussed coping strategies, distress and worry, the role of family and caregivers in their cancer care, and the toll of managing financial and insurance concerns. Using LDA, we discovered 8 themes, none of which were directly related to psychosocial aspects of survivorship. Of the 56 keywords identified by LDA, 2 (4%), “sleep” and “work,” were included in the keyword list that we independently devised. Conclusions Web-based discussion platforms offer a great opportunity to learn about patient experiences of survivorship. Our novel methodology expedites the quantitative and qualitative analyses of such robust data, which may be used for additional patient populations.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference32 articles.

1. NCI Dictionaries - SurvivorshipNational Cancer Institute20222022-09-08https://www.cancer.gov/publications/dictionaries/cancer-terms/def/survivor

2. NCCN Survivorship Guidelines: Survivorship Care for Cancer-Related Late and Long-Term EffectsNational Comprehensive Cancer Network20202022-09-08https://www.nccn.org/patients/guidelines/content/PDF/survivorship-crl-patient.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3