Predictive Performance of Machine Learning–Based Models for Poststroke Clinical Outcomes in Comparison With Conventional Prognostic Scores: Multicenter, Hospital-Based Observational Study

Author:

Irie FumiORCID,Matsumoto KoutarouORCID,Matsuo RyuORCID,Nohara YasunobuORCID,Wakisaka YoshinobuORCID,Ago TetsuroORCID,Nakashima NaokiORCID,Kitazono TakanariORCID,Kamouchi MasahiroORCID

Abstract

Background Although machine learning is a promising tool for making prognoses, the performance of machine learning in predicting outcomes after stroke remains to be examined. Objective This study aims to examine how much data-driven models with machine learning improve predictive performance for poststroke outcomes compared with conventional stroke prognostic scores and to elucidate how explanatory variables in machine learning–based models differ from the items of the stroke prognostic scores. Methods We used data from 10,513 patients who were registered in a multicenter prospective stroke registry in Japan between 2007 and 2017. The outcomes were poor functional outcome (modified Rankin Scale score >2) and death at 3 months after stroke. Machine learning–based models were developed using all variables with regularization methods, random forests, or boosted trees. We selected 3 stroke prognostic scores, namely, ASTRAL (Acute Stroke Registry and Analysis of Lausanne), PLAN (preadmission comorbidities, level of consciousness, age, neurologic deficit), and iScore (Ischemic Stroke Predictive Risk Score) for comparison. Item-based regression models were developed using the items of these 3 scores. The model performance was assessed in terms of discrimination and calibration. To compare the predictive performance of the data-driven model with that of the item-based model, we performed internal validation after random splits of identical populations into 80% of patients as a training set and 20% of patients as a test set; the models were developed in the training set and were validated in the test set. We evaluated the contribution of each variable to the models and compared the predictors used in the machine learning–based models with the items of the stroke prognostic scores. Results The mean age of the study patients was 73.0 (SD 12.5) years, and 59.1% (6209/10,513) of them were men. The area under the receiver operating characteristic curves and the area under the precision-recall curves for predicting poststroke outcomes were higher for machine learning–based models than for item-based models in identical populations after random splits. Machine learning–based models also performed better than item-based models in terms of the Brier score. Machine learning–based models used different explanatory variables, such as laboratory data, from the items of the conventional stroke prognostic scores. Including these data in the machine learning–based models as explanatory variables improved performance in predicting outcomes after stroke, especially poststroke death. Conclusions Machine learning–based models performed better in predicting poststroke outcomes than regression models using the items of conventional stroke prognostic scores, although they required additional variables, such as laboratory data, to attain improved performance. Further studies are warranted to validate the usefulness of machine learning in clinical settings.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3