Deep-Learning Model for Influenza Prediction From Multisource Heterogeneous Data in a Megacity: Model Development and Evaluation

Author:

Yang LiuyangORCID,Li GangORCID,Yang JinORCID,Zhang TingORCID,Du JingORCID,Liu TianORCID,Zhang XingxingORCID,Han XuanORCID,Li WeiORCID,Ma LibingORCID,Feng LuzhaoORCID,Yang WeizhongORCID

Abstract

Background In megacities, there is an urgent need to establish more sensitive forecasting and early warning methods for acute respiratory infectious diseases. Existing prediction and early warning models for influenza and other acute respiratory infectious diseases have limitations and therefore there is room for improvement. Objective The aim of this study was to explore a new and better-performing deep-learning model to predict influenza trends from multisource heterogeneous data in a megacity. Methods We collected multisource heterogeneous data from the 26th week of 2012 to the 25th week of 2019, including influenza-like illness (ILI) cases and virological surveillance, data of climate and demography, and search engines data. To avoid collinearity, we selected the best predictor according to the weight and correlation of each factor. We established a new multiattention-long short-term memory (LSTM) deep-learning model (MAL model), which was used to predict the percentage of ILI (ILI%) cases and the product of ILI% and the influenza-positive rate (ILI%×positive%), respectively. We also combined the data in different forms and added several machine-learning and deep-learning models commonly used in the past to predict influenza trends for comparison. The R2 value, explained variance scores, mean absolute error, and mean square error were used to evaluate the quality of the models. Results The highest correlation coefficients were found for the Baidu search data for ILI% and for air quality for ILI%×positive%. We first used the MAL model to calculate the ILI%, and then combined ILI% with climate, demographic, and Baidu data in different forms. The ILI%+climate+demography+Baidu model had the best prediction effect, with the explained variance score reaching 0.78, R2 reaching 0.76, mean absolute error of 0.08, and mean squared error of 0.01. Similarly, we used the MAL model to calculate the ILI%×positive% and combined this prediction with different data forms. The ILI%×positive%+climate+demography+Baidu model had the best prediction effect, with an explained variance score reaching 0.74, R2 reaching 0.70, mean absolute error of 0.02, and mean squared error of 0.02. Comparisons with random forest, extreme gradient boosting, LSTM, and gated current unit models showed that the MAL model had the best prediction effect. Conclusions The newly established MAL model outperformed existing models. Natural factors and search engine query data were more helpful in forecasting ILI patterns in megacities. With more timely and effective prediction of influenza and other respiratory infectious diseases and the epidemic intensity, early and better preparedness can be achieved to reduce the health damage to the population.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference36 articles.

1. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics

2. Coronavirus disease (COVID-19) pandemicWorld Health Organization2023-01-15https://www.who.int/emergencies/diseases/novel-coronavirus-2019

3. Influenza

4. The 1918 Influenza Pandemic and Its Legacy

5. Global Mortality Impact of the 1957–1959 Influenza Pandemic

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3