Artificial Intelligence–Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study

Author:

Chen WeijiaORCID,Lu ZhijunORCID,You LijueORCID,Zhou LinglingORCID,Xu JieORCID,Chen KenORCID

Abstract

Background Surgical site infection (SSI) is one of the most common types of health care–associated infections. It increases mortality, prolongs hospital length of stay, and raises health care costs. Many institutions developed risk assessment models for SSI to help surgeons preoperatively identify high-risk patients and guide clinical intervention. However, most of these models had low accuracies. Objective We aimed to provide a solution in the form of an Artificial intelligence–based Multimodal Risk Assessment Model for Surgical site infection (AMRAMS) for inpatients undergoing operations, using routinely collected clinical data. We internally and externally validated the discriminations of the models, which combined various machine learning and natural language processing techniques, and compared them with the National Nosocomial Infections Surveillance (NNIS) risk index. Methods We retrieved inpatient records between January 1, 2014, and June 30, 2019, from the electronic medical record (EMR) system of Rui Jin Hospital, Luwan Branch, Shanghai, China. We used data from before July 1, 2018, as the development set for internal validation and the remaining data as the test set for external validation. We included patient demographics, preoperative lab results, and free-text preoperative notes as our features. We used word-embedding techniques to encode text information, and we trained the LASSO (least absolute shrinkage and selection operator) model, random forest model, gradient boosting decision tree (GBDT) model, convolutional neural network (CNN) model, and self-attention network model using the combined data. Surgeons manually scored the NNIS risk index values. Results For internal bootstrapping validation, CNN yielded the highest mean area under the receiver operating characteristic curve (AUROC) of 0.889 (95% CI 0.886-0.892), and the paired-sample t test revealed statistically significant advantages as compared with other models (P<.001). The self-attention network yielded the second-highest mean AUROC of 0.882 (95% CI 0.878-0.886), but the AUROC was only numerically higher than the AUROC of the third-best model, GBDT with text embeddings (mean AUROC 0.881, 95% CI 0.878-0.884, P=.47). The AUROCs of LASSO, random forest, and GBDT models using text embeddings were statistically higher than the AUROCs of models not using text embeddings (P<.001). For external validation, the self-attention network yielded the highest AUROC of 0.879. CNN was the second-best model (AUROC 0.878), and GBDT with text embeddings was the third-best model (AUROC 0.872). The NNIS risk index scored by surgeons had an AUROC of 0.651. Conclusions Our AMRAMS based on EMR data and deep learning methods—CNN and self-attention network—had significant advantages in terms of accuracy compared with other conventional machine learning methods and the NNIS risk index. Moreover, the semantic embeddings of preoperative notes improved the model performance further. Our models could replace the NNIS risk index to provide personalized guidance for the preoperative intervention of SSIs. Through this case, we offered an easy-to-implement solution for building multimodal RAMs for other similar scenarios.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3