Expanding Access to Perinatal Depression Treatment in Kenya Through Automated Psychological Support: Development and Usability Study

Author:

Green Eric PORCID,Lai YihuanORCID,Pearson NicholasORCID,Rajasekharan SathyanathORCID,Rauws MichielORCID,Joerin AngelaORCID,Kwobah EdithORCID,Musyimi ChristineORCID,Jones Rachel MORCID,Bhat ChayaORCID,Mulinge AntoniaORCID,Puffer Eve SORCID

Abstract

Background Depression during pregnancy and in the postpartum period is associated with poor outcomes for women and their children. Although effective interventions exist for common mental disorders that occur during pregnancy and the postpartum period, most cases in low- and middle-income countries go untreated because of a lack of trained professionals. Task-sharing models such as the Thinking Healthy Program have shown potential in feasibility and efficacy trials as a strategy for expanding access to treatment in low-resource settings; however, there are significant barriers to scale-up. We address this gap by adapting Thinking Healthy for automated delivery via a mobile phone. This new intervention, Healthy Moms, uses an existing artificial intelligence system called Tess (Zuri in Kenya) to drive conversations with users. Objective This prepilot study aims to gather preliminary data on the Healthy Moms perinatal depression intervention to learn how to build and test a more robust service. Methods We conducted a single-case experimental design with pregnant women and new mothers recruited from public hospitals outside of Nairobi, Kenya. We invited these women to complete a brief, automated screening delivered via text messages to determine their eligibility. Enrolled participants were randomized to a 1- or 2-week baseline period and then invited to begin using Zuri. We prompted participants to rate their mood via SMS text messaging every 3 days during the baseline and intervention periods, and we used these preliminary repeated measures data to fit a linear mixed-effects model of response to treatment. We also reviewed system logs and conducted in-depth interviews with participants to study engagement with the intervention, feasibility, and acceptability. Results We invited 647 women to learn more about Zuri: 86 completed our automated SMS screening and 41 enrolled in the study. Most of the enrolled women submitted at least 3 mood ratings (31/41, 76%) and sent at least 1 message to Zuri (27/41, 66%). A third of the sample engaged beyond registration (14/41, 34%). On average, women who engaged post registration started 3.4 (SD 3.2) Healthy Moms sessions and completed 3.1 (SD 2.9) of the sessions they started. Most interviewees who tried Zuri reported having a positive attitude toward the service and expressed trust in Zuri. They also attributed positive life changes to the intervention. We estimated that using this alpha version of Zuri may have led to a 7% improvement in mood. Conclusions Zuri is feasible to deliver via SMS and was acceptable to this sample of pregnant women and new mothers. The results of this prepilot study will serve as a baseline for future studies in terms of recruitment, data collection, and outcomes. International Registered Report Identifier (IRRID) RR2-10.2196/11800

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3