Privacy-Oriented Technique for COVID-19 Contact Tracing (PROTECT) Using Homomorphic Encryption: Design and Development Study

Author:

An YongdaeORCID,Lee SeungmyungORCID,Jung SeungwooORCID,Park HowardORCID,Song YongsooORCID,Ko TaehoonORCID

Abstract

Background Various techniques are used to support contact tracing, which has been shown to be highly effective against the COVID-19 pandemic. To apply the technology, either quarantine authorities should provide the location history of patients with COVID-19, or all users should provide their own location history. This inevitably exposes either the patient’s location history or the personal location history of other users. Thus, a privacy issue arises where the public good (via information release) comes in conflict with privacy exposure risks. Objective The objective of this study is to develop an effective contact tracing system that does not expose the location information of the patient with COVID-19 to other users of the system, or the location information of the users to the quarantine authorities. Methods We propose a new protocol called PRivacy Oriented Technique for Epidemic Contact Tracing (PROTECT) that securely shares location information of patients with users by using the Brakerski/Fan-Vercauteren homomorphic encryption scheme, along with a new, secure proximity computation method. Results We developed a mobile app for the end-user and a web service for the quarantine authorities by applying the proposed method, and we verified their effectiveness. The proposed app and web service compute the existence of intersections between the encrypted location history of patients with COVID-19 released by the quarantine authorities and that of the user saved on the user’s local device. We also found that this contact tracing smartphone app can identify whether the user has been in contact with such patients within a reasonable time. Conclusions This newly developed method for contact tracing shares location information by using homomorphic encryption, without exposing the location information of patients with COVID-19 and other users. Homomorphic encryption is challenging to apply to practical issues despite its high security value. In this study, however, we have designed a system using the Brakerski/Fan-Vercauteren scheme that is applicable to a reasonable size and developed it to an operable format. The developed app and web service can help contact tracing for not only the COVID-19 pandemic but also other epidemics.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Qualitative Analysis of Homomorphic Encryption in Medical Field;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

2. FastReach: A system for privacy-preserving reachability queries over location data;Computers & Security;2023-12

3. Privacy-Preserving Location Sharing via LWE-based Private Information Retrieval;2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS);2023-11-23

4. The Changing Landscape of Privacy– Countermeasures in the Era of the COVID-19 Pandemic;IT Professional;2023-07

5. Privacy-Preserving Contact Tracing for Curbing the Spread of Infectious Disease;Journal of Database Management;2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3