Event Analysis for Automated Estimation of Absent and Persistent Medication Alerts: Novel Methodology

Author:

Bittmann Janina AORCID,Scherkl CamiloORCID,Meid Andreas DORCID,Haefeli Walter EORCID,Seidling Hanna MORCID

Abstract

Abstract Background Event analysis is a promising approach to estimate the acceptance of medication alerts issued by computerized physician order entry (CPOE) systems with an integrated clinical decision support system (CDSS), particularly when alerts cannot be interactively confirmed in the CPOE-CDSS due to its system architecture. Medication documentation is then reviewed for documented evidence of alert acceptance, which can be a time-consuming process, especially when performed manually. Objective We present a new automated event analysis approach, which was applied to a large data set generated in a CPOE-CDSS with passive, noninterruptive alerts. Methods Medication and alert data generated over 3.5 months within the CPOE-CDSS at Heidelberg University Hospital were divided into 24-hour time intervals in which the alert display was correlated with associated prescription changes. Alerts were considered “persistent” if they were displayed in every consecutive 24-hour time interval due to a respective active prescription until patient discharge and were considered “absent” if they were no longer displayed during continuous prescriptions in the subsequent interval. Results Overall, 1670 patient cases with 11,428 alerts were analyzed. Alerts were displayed for a median of 3 (IQR 1-7) consecutive 24-hour time intervals, with the shortest alerts displayed for drug-allergy interactions and the longest alerts displayed for potentially inappropriate medication for the elderly (PIM). Among the total 11,428 alerts, 56.1% (n=6413) became absent, most commonly among alerts for drug-drug interactions (1915/2366, 80.9%) and least commonly among PIM alerts (199/499, 39.9%). Conclusions This new approach to estimate alert acceptance based on event analysis can be flexibly adapted to the automated evaluation of passive, noninterruptive alerts. This enables large data sets of longitudinal patient cases to be processed, allows for the derivation of the ratios of persistent and absent alerts, and facilitates the comparison and prospective monitoring of these alerts.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3