Leveraging Artificial Intelligence to Improve the Diversity of Dermatological Skin Color Pathology: Protocol for an Algorithm Development and Validation Study

Author:

Rezk EmanORCID,Eltorki MohamedORCID,El-Dakhakhni WaelORCID

Abstract

Background The paucity of dark skin images in dermatological textbooks and atlases is a reflection of racial injustice in medicine. The underrepresentation of dark skin images makes diagnosing skin pathology in people of color challenging. For conditions such as skin cancer, in which early diagnosis makes a difference between life and death, people of color have worse prognoses and lower survival rates than people with lighter skin tones as a result of delayed or incorrect diagnoses. Recent advances in artificial intelligence, such as deep learning, offer a potential solution that can be achieved by diversifying the mostly light-skin image repositories through generating images for darker skin tones. Thus, facilitating the development of inclusive cancer early diagnosis systems that are trained and tested on diverse images that truly represent human skin tones. Objective We aim to develop and evaluate an artificial intelligence–based skin cancer early detection system for all skin tones using clinical images. Methods This study consists of four phases: (1) Publicly available skin image repositories will be analyzed to quantify the underrepresentation of darker skin tones, (2) Images will be generated for the underrepresented skin tones, (3) Generated images will be extensively evaluated for realism and disease presentation with quantitative image quality assessment as well as qualitative human expert and nonexpert ratings, and (4) The images will be utilized with available light-skin images to develop a robust skin cancer early detection model. Results This study started in September 2020. The first phase of quantifying the underrepresentation of darker skin tones was completed in March 2021. The second phase of generating the images is in progress and will be completed by March 2022. The third phase is expected to be completed by May 2022, and the final phase is expected to be completed by September 2022. Conclusions This work is the first step toward expanding skin tone diversity in existing image databases to address the current gap in the underrepresentation of darker skin tones. Once validated, the image bank will be a valuable resource that can potentially be utilized in physician education and in research applications. Furthermore, generated images are expected to improve the generalizability of skin cancer detection. When completed, the model will assist family physicians and general practitioners in evaluating skin lesion severity and in efficient triaging for referral to expert dermatologists. In addition, the model can assist dermatologists in diagnosing skin lesions. International Registered Report Identifier (IRRID) DERR1-10.2196/34896

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3