Stressors and Destressors in Working From Home Based on Context and Physiology From Self-Reports and Smartwatch Measurements: International Observational Study Trial

Author:

Tump DanielleORCID,Narayan NitinORCID,Verbiest VeraORCID,Hermsen SanderORCID,Goris AnneliesORCID,Chiu Chui-DeORCID,Van Stiphout RuudORCID

Abstract

Background The COVID-19 pandemic has greatly boosted working from home as a way of working, which is likely to continue for most companies in the future, either in fully remote or in hybrid form. To manage stress levels in employees working from home, insights into the stressors and destressors in a home office first need to be studied. Objective We present an international remote study with employees working from home by making use of state-of-the-art technology (ie, smartwatches and questionnaires through smartphones) first to determine stressors and destressors in people working from home and second to identify smartwatch measurements that could represent these stressors and destressors. Methods Employees working from home from 3 regions of the world (the United States, the United Kingdom, and Hong Kong) were asked to wear a smartwatch continuously for 7 days and fill in 5 questionnaires each day and 2 additional questionnaires before and after the measurement week. The entire study was conducted remotely. Univariate statistical analyses comparing variable distributions between low and high stress levels were followed by multivariate analysis using logistic regression, considering multicollinearity by using variance inflation factor (VIF) filtering. Results A total of 202 people participated, with 198 (98%) participants finishing the experiment. Stressors found were other people and daily life getting in the way of work (P=.05), job intensity (P=.01), a history of burnout (P=.03), anxiety toward the pandemic (P=.04), and environmental noise (P=.01). Destressors found were access to sunlight (P=.02) and fresh air (P<.001) during the workday and going outdoors (P<.001), taking breaks (P<.001), exercising (P<.001), and having social interactions (P<.001). The smartwatch measurements positively related to stress were the number of active intensity periods (P<.001), the number of highly active intensity periods (P=.04), steps (P<.001), and the SD in the heart rate (HR; P<.001). In a multivariate setting, only a history of burnout (P<.001) and family and daily life getting in the way of work (P<.001) were positively associated with stress, while self-reports of social activities (P<.001) and going outdoors (P=.03) were negatively associated with stress. Stress prediction models based on questionnaire data had a similar performance (F1=0.51) compared to models based on automatic measurable data alone (F1=0.47). Conclusions The results show that there are stressors and destressors when working from home that should be considered when managing stress in employees. Some of these stressors and destressors are (in)directly measurable with unobtrusive sensors, and prediction models based on these data show promising results for the future of automatic stress detection and management. Trial Registration Netherlands Trial Register NL9378; https://trialsearch.who.int/Trial2.aspx?TrialID=NL9378

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference60 articles.

1. World Health OrganizationListings of WHO's Response to COVID-1920212022-10-21https://www.who.int/news/item/29-06-2020-covidtimeline

2. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis

3. Meta CareersMeta2022-10-20https://www.metacareers.com/life/what-remote-and-flexible-work-will-look-like-at-facebook

4. GoogleA Hybrid Approach to Work2022-10-21https://blog.google/inside-google/life-at-google/hybrid-approach-work

5. PwCThe Benefits and Challenges of Hybrid Working2022-10-21https://www.pwc.nl/en/topics/blogs/the-benefits-and-challenges-of-hybrid-working.html

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3