Combination of Paper and Electronic Trail Making Tests for Automatic Analysis of Cognitive Impairment: Development and Validation Study

Author:

Zhang WeiORCID,Zheng XiaoranORCID,Tang ZeshenORCID,Wang HaoranORCID,Li RenrenORCID,Xie ZengmaiORCID,Yan JiaxinORCID,Zhang XiaochenORCID,Yu QingORCID,Wang FeiORCID,Li YunxiaORCID

Abstract

Background Computer-aided detection, used in the screening and diagnosing of cognitive impairment, provides an objective, valid, and convenient assessment. Particularly, digital sensor technology is a promising detection method. Objective This study aimed to develop and validate a novel Trail Making Test (TMT) using a combination of paper and electronic devices. Methods This study included community-dwelling older adult individuals (n=297), who were classified into (1) cognitively healthy controls (HC; n=100 participants), (2) participants diagnosed with mild cognitive impairment (MCI; n=98 participants), and (3) participants with Alzheimer disease (AD; n=99 participants). An electromagnetic tablet was used to record each participant’s hand-drawn stroke. A sheet of A4 paper was placed on top of the tablet to maintain the traditional interaction style for participants who were not familiar or comfortable with electronic devices (such as touchscreens). In this way, all participants were instructed to perform the TMT-square and circle. Furthermore, we developed an efficient and interpretable cognitive impairment–screening model to automatically analyze cognitive impairment levels that were dependent on demographic characteristics and time-, pressure-, jerk-, and template-related features. Among these features, novel template-based features were based on a vector quantization algorithm. First, the model identified a candidate trajectory as the standard answer (template) from the HC group. The distance between the recorded trajectories and reference was computed as an important evaluation index. To verify the effectiveness of our method, we compared the performance of a well-trained machine learning model using the extracted evaluation index with conventional demographic characteristics and time-related features. The well-trained model was validated using follow-up data (HC group: n=38; MCI group: n=32; and AD group: n=22). Results We compared 5 candidate machine learning methods and selected random forest as the ideal model with the best performance (accuracy: 0.726 for HC vs MCI, 0.929 for HC vs AD, and 0.815 for AD vs MCI). Meanwhile, the well-trained classifier achieved better performance than the conventional assessment method, with high stability and accuracy of the follow-up data. Conclusions The study demonstrated that a model combining both paper and electronic TMTs increases the accuracy of evaluating participants’ cognitive impairment compared to conventional paper-based feature assessment.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3