A Deep Residual U-Net Algorithm for Automatic Detection and Quantification of Ascites on Abdominopelvic Computed Tomography Images Acquired in the Emergency Department: Model Development and Validation

Author:

Ko HoonORCID,Huh JimiORCID,Kim Kyung WonORCID,Chung HeewonORCID,Ko YousunORCID,Kim Jai KeunORCID,Lee Jei HeeORCID,Lee JinseokORCID

Abstract

Background Detection and quantification of intra-abdominal free fluid (ie, ascites) on computed tomography (CT) images are essential processes for finding emergent or urgent conditions in patients. In an emergency department, automatic detection and quantification of ascites will be beneficial. Objective We aimed to develop an artificial intelligence (AI) algorithm for the automatic detection and quantification of ascites simultaneously using a single deep learning model (DLM). Methods We developed 2D DLMs based on deep residual U-Net, U-Net, bidirectional U-Net, and recurrent residual U-Net (R2U-Net) algorithms to segment areas of ascites on abdominopelvic CT images. Based on segmentation results, the DLMs detected ascites by classifying CT images into ascites images and nonascites images. The AI algorithms were trained using 6337 CT images from 160 subjects (80 with ascites and 80 without ascites) and tested using 1635 CT images from 40 subjects (20 with ascites and 20 without ascites). The performance of the AI algorithms was evaluated for diagnostic accuracy of ascites detection and for segmentation accuracy of ascites areas. Of these DLMs, we proposed an AI algorithm with the best performance. Results The segmentation accuracy was the highest for the deep residual U-Net model with a mean intersection over union (mIoU) value of 0.87, followed by U-Net, bidirectional U-Net, and R2U-Net models (mIoU values of 0.80, 0.77, and 0.67, respectively). The detection accuracy was the highest for the deep residual U-Net model (0.96), followed by U-Net, bidirectional U-Net, and R2U-Net models (0.90, 0.88, and 0.82, respectively). The deep residual U-Net model also achieved high sensitivity (0.96) and high specificity (0.96). Conclusions We propose a deep residual U-Net–based AI algorithm for automatic detection and quantification of ascites on abdominopelvic CT scans, which provides excellent performance.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3