Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach

Author:

Tsai Ming-ChinORCID,Lu Henry Horng-ShingORCID,Chang Yueh-ChuanORCID,Huang Yung-ChiehORCID,Fu Lin-ShienORCID

Abstract

Background In recent years, the progress and generalization surrounding portable ultrasonic probes has made ultrasound (US) a useful tool for physicians when making a diagnosis. With the advent of machine learning and deep learning, the development of a computer-aided diagnostic system for screening renal US abnormalities can assist general practitioners in the early detection of pediatric kidney diseases. Objective In this paper, we sought to evaluate the diagnostic performance of deep learning techniques to classify kidney images as normal and abnormal. Methods We chose 330 normal and 1269 abnormal pediatric renal US images for establishing a model for artificial intelligence. The abnormal images involved stones, cysts, hyperechogenicity, space-occupying lesions, and hydronephrosis. We performed preprocessing of the original images for subsequent deep learning. We redefined the final connecting layers for classification of the extracted features as abnormal or normal from the ResNet-50 pretrained model. The performances of the model were tested by a validation data set using area under the receiver operating characteristic curve, accuracy, specificity, and sensitivity. Results The deep learning model, 94 MB parameters in size, based on ResNet-50, was built for classifying normal and abnormal images. The accuracy, (%)/area under curve, of the validated images of stone, cyst, hyperechogenicity, space-occupying lesions, and hydronephrosis were 93.2/0.973, 91.6/0.940, 89.9/0.940, 91.3/0.934, and 94.1/0.996, respectively. The accuracy of normal image classification in the validation data set was 90.1%. Overall accuracy of (%)/area under curve was 92.9/0.959.. Conclusions We established a useful, computer-aided model for automatic classification of pediatric renal US images in terms of normal and abnormal categories.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3