Rhythmic Haptic Cueing for Gait Rehabilitation of People With Hemiparesis: Quantitative Gait Study

Author:

Georgiou TheodorosORCID,Holland SimonORCID,van der Linden JanetORCID

Abstract

Background Rhythm, brain, and body are closely linked. Humans can synchronize their movement to auditory rhythms in ways that can improve the regularity of movement while reducing perceived effort. However, the ability to perform rhythmic movement may be disrupted by various neurological conditions. Many such conditions impair mechanisms that control movement, such as gait, but typically without rhythmic perception being affected. This paper focuses on hemiparetic stroke, a neurological condition that affects one side of the body. Hemiparetic stroke can cause severe asymmetries in gait, leading to numerous physical problems ranging from muscle degeneration to bone fractures. Movement synchronization via entrainment to auditory metronomes is known to improve asymmetry and related gait problems; this paper presents the first systematic study of entrainment for gait rehabilitation via the haptic modality. Objective This paper explores the gait rehabilitation of people with hemiparesis following a stroke or brain injury, by a process of haptic entrainment to rhythmic cues. Various objective measures, such as stride length and stride time, are considered. Methods This study is a quantitative gait study combining temporal and spatial data on haptically cued participants with hemiparetic stroke and brain injury. We designed wearable devices to deliver the haptic rhythm, called Haptic Bracelets, which were placed on the leg near the knee. Spatial data were recorded using a Qualisys optical motion capturing system, consisting of 8 optoelectronic cameras, and 20 markers placed on anatomical lower limb landmarks and 4 additional tracking clusters placed on the right and left shank and thigh. Gait characteristics were measured before, during, and after cueing. Results All 11 successfully screened participants were able to synchronize their steps to a haptically presented rhythm. Specifically, 6 participants demonstrated immediate improvements regarding their temporal gait characteristics, and 3 of the 6 improved their gait in terms of spatial characteristics. Conclusions Considering the great variability between survivors of stroke and brain injury and the limited number of available participants in our study, there is no claim of statistical evidence that supports a formal experimental result of improved gait. However, viewing this empirical gait investigation as a set of 11 case studies, more modest empirical claims can be made. All participants were able to synchronize their steps to a haptically presented rhythm. For a substantial proportion of participants, an immediate (though not necessarily lasting) improvement of temporal gait characteristics was found during cueing. Some improvements over baseline occurred immediately after, rather than during, haptic cueing. Design issues and trade-offs are identified, and interactions between perception, sensory deficit, attention, memory, cognitive load, and haptic entrainment are noted.

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3