COVID-19 Surveillance in a Primary Care Sentinel Network: In-Pandemic Development of an Application Ontology

Author:

de Lusignan SimonORCID,Liyanage HarshanaORCID,McGagh DylanORCID,Jani Bhautesh DineshORCID,Bauwens JorgenORCID,Byford RachelORCID,Evans DaiORCID,Fahey TomORCID,Greenhalgh TrishaORCID,Jones NicholasORCID,Mair Frances SORCID,Okusi CeciliaORCID,Parimalanathan VaishnaviORCID,Pell Jill PORCID,Sherlock JulianORCID,Tamburis OscarORCID,Tripathy ManasaORCID,Ferreira FilipaORCID,Williams JohnORCID,Hobbs F D RichardORCID

Abstract

Background Creating an ontology for COVID-19 surveillance should help ensure transparency and consistency. Ontologies formalize conceptualizations at either the domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was an extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. Objective This study aimed to develop an application ontology for COVID-19 that can be deployed across the various use-case domains of the RCGP RSC research and surveillance activities. Methods We described our domain-specific use case. The actor was the RCGP RSC sentinel network, the system was the course of the COVID-19 pandemic, and the outcomes were the spread and effect of mitigation measures. We used our established 3-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system–independent COVID-19 case identification algorithm. As there were no gold-standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association Primary Health Care Informatics working group and extended networks. Results Our use-case domains included primary care, public health, virology, clinical research, and clinical informatics. Our ontology supported (1) case identification, microbiological sampling, and health outcomes at an individual practice and at the national level; (2) feedback through a dashboard; (3) a national observatory; (4) regular updates for Public Health England; and (5) transformation of a sentinel network into a trial platform. We have identified a total of 19,115 people with a definite COVID-19 status, 5226 probable cases, and 74,293 people with possible COVID-19, within the RCGP RSC network (N=5,370,225). Conclusions The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference56 articles.

1. Understanding Health Care as a Complex System

2. Understanding health care delivery as a complex system

3. A novel coronavirus outbreak of global health concern

4. Novel Coronavirus(2019-nCoV) Situation Report - 10World Health Organization20201302020-05-11https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200130-sitrep-10-ncov.pdf?sfvrsn=d0b2e480_2

5. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3