Measuring Mobility and Room Occupancy in Clinical Settings: System Development and Implementation

Author:

Marini GabrieleORCID,Tag BenjaminORCID,Goncalves JorgeORCID,Velloso EduardoORCID,Jurdak RajaORCID,Capurro DanielORCID,McCarthy ClareORCID,Shearer WilliamORCID,Kostakos VassilisORCID

Abstract

Background The use of location-based data in clinical settings is often limited to real-time monitoring. In this study, we aim to develop a proximity-based localization system and show how its longitudinal deployment can provide operational insights related to staff and patients' mobility and room occupancy in clinical settings. Such a streamlined data-driven approach can help in increasing the uptime of operating rooms and more broadly provide an improved understanding of facility utilization. Objective The aim of this study is to measure the accuracy of the system and algorithmically calculate measures of mobility and occupancy. Methods We developed a Bluetooth low energy, proximity-based localization system and deployed it in a hospital for 30 days. The system recorded the position of 75 people (17 patients and 55 staff) during this period. In addition, we collected ground-truth data and used them to validate system performance and accuracy. A number of analyses were conducted to estimate how people move in the hospital and where they spend their time. Results Using ground-truth data, we estimated the accuracy of our system to be 96%. Using mobility trace analysis, we generated occupancy rates for different rooms in the hospital occupied by both staff and patients. We were also able to measure how much time, on average, patients spend in different rooms of the hospital. Finally, using unsupervised hierarchical clustering, we showed that the system could differentiate between staff and patients without training. Conclusions Analysis of longitudinal, location-based data can offer rich operational insights into hospital efficiency. In particular, they allow quick and consistent assessment of new strategies and protocols and provide a quantitative way to measure their effectiveness.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3