Digital Platform for Continuous Monitoring of Patients Using a Smartwatch: Longitudinal Prospective Cohort Study

Author:

Bin Kaio JiaORCID,De Pretto Lucas RamosORCID,Sanchez Fábio BeltrameORCID,De Souza e Castro Fabio Pacheco MunizORCID,Ramos Vinicius DelgadoORCID,Battistella Linamara RizzoORCID

Abstract

Background Since the COVID-19 pandemic, there has been a boost in the digital transformation of the human society, where wearable devices such as a smartwatch can already measure vital signs in a continuous and naturalistic way; however, the security and privacy of personal data is a challenge to expanding the use of these data by health professionals in clinical follow-up for decision-making. Similar to the European General Data Protection Regulation, in Brazil, the Lei Geral de Proteção de Dados established rules and guidelines for the processing of personal data, including those used for patient care, such as those captured by smartwatches. Thus, in any telemonitoring scenario, there is a need to comply with rules and regulations, making this issue a challenge to overcome. Objective This study aimed to build a digital solution model for capturing data from wearable devices and making them available in a safe and agile manner for clinical and research use, following current laws. Methods A functional model was built following the Brazilian Lei Geral de Proteção de Dados (2018), where data captured by smartwatches can be transmitted anonymously over the Internet of Things and be identified later within the hospital. A total of 80 volunteers were selected for a 24-week follow-up clinical trial divided into 2 groups, one group with a previous diagnosis of COVID-19 and a control group without a previous diagnosis of COVID-19, to measure the synchronization rate of the platform with the devices and the accuracy and precision of the smartwatch in out-of-hospital conditions to simulate remote monitoring at home. Results In a 35-week clinical trial, >11.2 million records were collected with no system downtime; 66% of continuous beats per minute were synchronized within 24 hours (79% within 2 days and 91% within a week). In the limit of agreement analysis, the mean differences in oxygen saturation, diastolic blood pressure, systolic blood pressure, and heart rate were −1.280% (SD 5.679%), −1.399 (SD 19.112) mm Hg, −1.536 (SD 24.244) mm Hg, and 0.566 (SD 3.114) beats per minute, respectively. Furthermore, there was no difference in the 2 study groups in terms of data analysis (neither using the smartwatch nor the gold-standard devices), but it is worth mentioning that all volunteers in the COVID-19 group were already cured of the infection and were highly functional in their daily work life. Conclusions On the basis of the results obtained, considering the validation conditions of accuracy and precision and simulating an extrahospital use environment, the functional model built in this study is capable of capturing data from the smartwatch and anonymously providing it to health care services, where they can be treated according to the legislation and be used to support clinical decisions during remote monitoring.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference48 articles.

1. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020World Health Organization20203112020-03-23https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-​at-the-media-briefing-on-covid-19---11-march-2020

2. WHO Coronavirus (COVID-19) dashboardWorld Health Organization2022-03-23https://covid19.who.int/

3. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective

4. Digital transformation of the relationship between industry and healthcare professionals

5. Accelerating the digital transformation of community midwifery during the COVID-19 pandemic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3