Use of Artificial Intelligence in the Identification and Diagnosis of Frailty Syndrome in Older Adults: Scoping Review

Author:

Velazquez-Diaz DanielORCID,Arco Juan EORCID,Ortiz AndresORCID,Pérez-Cabezas VerónicaORCID,Lucena-Anton DavidORCID,Moral-Munoz Jose AORCID,Galán-Mercant AlejandroORCID

Abstract

Background Frailty syndrome (FS) is one of the most common noncommunicable diseases, which is associated with lower physical and mental capacities in older adults. FS diagnosis is mostly focused on biological variables; however, it is likely that this diagnosis could fail owing to the high biological variability in this syndrome. Therefore, artificial intelligence (AI) could be a potential strategy to identify and diagnose this complex and multifactorial geriatric syndrome. Objective The objective of this scoping review was to analyze the existing scientific evidence on the use of AI for the identification and diagnosis of FS in older adults, as well as to identify which model provides enhanced accuracy, sensitivity, specificity, and area under the curve (AUC). Methods A search was conducted using PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines on various databases: PubMed, Web of Science, Scopus, and Google Scholar. The search strategy followed Population/Problem, Intervention, Comparison, and Outcome (PICO) criteria with the population being older adults; intervention being AI; comparison being compared or not to other diagnostic methods; and outcome being FS with reported sensitivity, specificity, accuracy, or AUC values. The results were synthesized through information extraction and are presented in tables. Results We identified 26 studies that met the inclusion criteria, 6 of which had a data set over 2000 and 3 with data sets below 100. Machine learning was the most widely used type of AI, employed in 18 studies. Moreover, of the 26 included studies, 9 used clinical data, with clinical histories being the most frequently used data type in this category. The remaining 17 studies used nonclinical data, most frequently involving activity monitoring using an inertial sensor in clinical and nonclinical contexts. Regarding the performance of each AI model, 10 studies achieved a value of precision, sensitivity, specificity, or AUC ≥90. Conclusions The findings of this scoping review clarify the overall status of recent studies using AI to identify and diagnose FS. Moreover, the findings show that the combined use of AI using clinical data along with nonclinical information such as the kinematics of inertial sensors that monitor activities in a nonclinical context could be an appropriate tool for the identification and diagnosis of FS. Nevertheless, some possible limitations of the evidence included in the review could be small sample sizes, heterogeneity of study designs, and lack of standardization in the AI models and diagnostic criteria used across studies. Future research is needed to validate AI systems with diverse data sources for diagnosing FS. AI should be used as a decision support tool for identifying FS, with data quality and privacy addressed, and the tool should be regularly monitored for performance after being integrated in clinical practice.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference47 articles.

1. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423)United Nations Department of Economic and Social Affairs2023-09-26https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf

2. Tous les pays du monde (2022)

3. Research Agenda for Frailty in Older Adults: Toward a Better Understanding of Physiology and Etiology: Summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults

4. Frailty in Relation to the Accumulation of Deficits

5. Informe mundial sobre el envejecimiento y la salud: resumenWorld Health Organization2015092023-09-26https://iris.who.int/handle/10665/186471

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3