Realistic High-Resolution Body Computed Tomography Image Synthesis by Using Progressive Growing Generative Adversarial Network: Visual Turing Test

Author:

Park Ho YoungORCID,Bae Hyun-JinORCID,Hong Gil-SunORCID,Kim MinjeeORCID,Yun JiHyeORCID,Park SungwonORCID,Chung Won JungORCID,Kim NamKugORCID

Abstract

Background Generative adversarial network (GAN)–based synthetic images can be viable solutions to current supervised deep learning challenges. However, generating highly realistic images is a prerequisite for these approaches. Objective The aim of this study was to investigate and validate the unsupervised synthesis of highly realistic body computed tomography (CT) images by using a progressive growing GAN (PGGAN) trained to learn the probability distribution of normal data. Methods We trained the PGGAN by using 11,755 body CT scans. Ten radiologists (4 radiologists with <5 years of experience [Group I], 4 radiologists with 5-10 years of experience [Group II], and 2 radiologists with >10 years of experience [Group III]) evaluated the results in a binary approach by using an independent validation set of 300 images (150 real and 150 synthetic) to judge the authenticity of each image. Results The mean accuracy of the 10 readers in the entire image set was higher than random guessing (1781/3000, 59.4% vs 1500/3000, 50.0%, respectively; P<.001). However, in terms of identifying synthetic images as fake, there was no significant difference in the specificity between the visual Turing test and random guessing (779/1500, 51.9% vs 750/1500, 50.0%, respectively; P=.29). The accuracy between the 3 reader groups with different experience levels was not significantly different (Group I, 696/1200, 58.0%; Group II, 726/1200, 60.5%; and Group III, 359/600, 59.8%; P=.36). Interreader agreements were poor (κ=0.11) for the entire image set. In subgroup analysis, the discrepancies between real and synthetic CT images occurred mainly in the thoracoabdominal junction and in the anatomical details. Conclusions The GAN can synthesize highly realistic high-resolution body CT images that are indistinguishable from real images; however, it has limitations in generating body images of the thoracoabdominal junction and lacks accuracy in the anatomical details.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3