Detecting Impending Stroke From Cognitive Traits Evident in Internet Searches: Analysis of Archival Data

Author:

Shaklai SigalORCID,Gilad-Bachrach RanORCID,Yom-Tov EladORCID,Stern NaftaliORCID

Abstract

Background Cerebrovascular disease is a leading cause of mortality and disability. Common risk assessment tools for stroke are based on the Framingham equation, which relies on traditional cardiovascular risk factors to predict an acute event in the near decade. However, no tools are currently available to predict a near/impending stroke, which might alert patients at risk to seek immediate preventive action (eg, anticoagulants for atrial fibrillation, control of hypertension). Objective Here, we propose that an algorithm based on internet search queries can identify people at increased risk for a near stroke event. Methods We analyzed queries submitted to the Bing search engine by 285 people who self-identified as having undergone a stroke event and 1195 controls with regard to attributes previously shown to reflect cognitive function. Controls included random people 60 years and above, or those of similar age who queried for one of nine control conditions. Results The model performed well against all comparator groups with an area under the receiver operating characteristic curve of 0.985 or higher and a true positive rate (at a 1% false-positive rate) above 80% for separating patients from each of the controls. The predictive power rose as the stroke date approached and if data were acquired beginning 120 days prior to the event. Good prediction accuracy was obtained for a prospective cohort of users collected 1 year later. The most predictive attributes of the model were associated with cognitive function, including the use of common queries, repetition of queries, appearance of spelling mistakes, and number of queries per session. Conclusions The proposed algorithm offers a screening test for a near stroke event. After clinical validation, this algorithm may enable the administration of rapid preventive intervention. Moreover, it could be applied inexpensively, continuously, and on a large scale with the aim of reducing stroke events.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3