Quality Assessment of TikTok as a Source of Information About Mitral Valve Regurgitation in China: Cross-Sectional Study

Author:

Cui NannanORCID,Lu YutingORCID,Cao YelinORCID,Chen XiaofanORCID,Fu ShuiqiaoORCID,Su QunORCID

Abstract

Background In China, mitral valve regurgitation (MR) is the most common cardiovascular valve disease. However, patients in China typically experience a high incidence of this condition, coupled with a low level of health knowledge and a relatively low rate of surgical treatment. TikTok hosts a vast amount of content related to diseases and health knowledge, providing viewers with access to relevant information. However, there has been no investigation or evaluation of the quality of videos specifically addressing MR. Objective This study aims to assess the quality of videos about MR on TikTok in China. Methods A cross-sectional study was conducted on the Chinese version of TikTok on September 9, 2023. The top 100 videos on MR were included and evaluated using quantitative scoring tools such as the modified DISCERN (mDISCERN), the Journal of the American Medical Association (JAMA) benchmark criteria, the Global Quality Score (GQS), and the Patient Education Materials Assessment Tool for Audio-Visual Content (PEMAT-A/V). Correlation and stepwise regression analyses were performed to examine the relationships between video quality and various characteristics. Results We obtained 88 valid video files, of which most (n=81, 92%) were uploaded by certified physicians, primarily cardiac surgeons, and cardiologists. News agencies/organizations and physicians had higher GQS scores compared with individuals (news agencies/organizations vs individuals, P=.001; physicians vs individuals, P=.03). Additionally, news agencies/organizations had higher PEMAT understandability scores than individuals (P=.01). Videos focused on disease knowledge scored higher in GQS (P<.001), PEMAT understandability (P<.001), and PEMAT actionability (P<.001) compared with videos covering surgical cases. PEMAT actionability scores were higher for outpatient cases compared with surgical cases (P<.001). Additionally, videos focused on surgical techniques had lower PEMAT actionability scores than those about disease knowledge (P=.04). The strongest correlations observed were between thumbs up and comments (r=0.92, P<.001), thumbs up and favorites (r=0.89, P<.001), thumbs up and shares (r=0.87, P<.001), comments and favorites (r=0.81, P<.001), comments and shares (r=0.87, P<.001), and favorites and shares (r=0.83, P<.001). Stepwise regression analysis identified “length (P<.001),” “content (P<.001),” and “physicians (P=.004)” as significant predictors of GQS. The final model (model 3) explained 50.1% of the variance in GQSs. The predictive equation for GQS is as follows: GQS = 3.230 − 0.294 × content − 0.274 × physicians + 0.005 × length. This model was statistically significant (P=.004) and showed no issues with multicollinearity or autocorrelation. Conclusions Our study reveals that while most MR-related videos on TikTok were uploaded by certified physicians, ensuring professional and scientific content, the overall quality scores were suboptimal. Despite the educational value of these videos, the guidance provided was often insufficient. The predictive equation for GQS developed from our analysis offers valuable insights but should be applied with caution beyond the study context. It suggests that creators should focus on improving both the content and presentation of their videos to enhance the quality of health information shared on social media.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3