An Environmental Uncertainty Perception Framework for Misinformation Detection and Spread Prediction in the COVID-19 Pandemic: Artificial Intelligence Approach

Author:

Lu JiahuiORCID,Zhang HuibinORCID,Xiao YiORCID,Wang YingyuORCID

Abstract

Background Amidst the COVID-19 pandemic, misinformation on social media has posed significant threats to public health. Detecting and predicting the spread of misinformation are crucial for mitigating its adverse effects. However, prevailing frameworks for these tasks have predominantly focused on post-level signals of misinformation, neglecting features of the broader information environment where misinformation originates and proliferates. Objective This study aims to create a novel framework that integrates the uncertainty of the information environment into misinformation features, with the goal of enhancing the model’s accuracy in tasks such as misinformation detection and predicting the scale of dissemination. The objective is to provide better support for online governance efforts during health crises. Methods In this study, we embraced uncertainty features within the information environment and introduced a novel Environmental Uncertainty Perception (EUP) framework for the detection of misinformation and the prediction of its spread on social media. The framework encompasses uncertainty at 4 scales of the information environment: physical environment, macro-media environment, micro-communicative environment, and message framing. We assessed the effectiveness of the EUP using real-world COVID-19 misinformation data sets. Results The experimental results demonstrated that the EUP alone achieved notably good performance, with detection accuracy at 0.753 and prediction accuracy at 0.71. These results were comparable to state-of-the-art baseline models such as bidirectional long short-term memory (BiLSTM; detection accuracy 0.733 and prediction accuracy 0.707) and bidirectional encoder representations from transformers (BERT; detection accuracy 0.755 and prediction accuracy 0.728). Additionally, when the baseline models collaborated with the EUP, they exhibited improved accuracy by an average of 1.98% for the misinformation detection and 2.4% for spread-prediction tasks. On unbalanced data sets, the EUP yielded relative improvements of 21.5% and 5.7% in macro-F1-score and area under the curve, respectively. Conclusions This study makes a significant contribution to the literature by recognizing uncertainty features within information environments as a crucial factor for improving misinformation detection and spread-prediction algorithms during the pandemic. The research elaborates on the complexities of uncertain information environments for misinformation across 4 distinct scales, including the physical environment, macro-media environment, micro-communicative environment, and message framing. The findings underscore the effectiveness of incorporating uncertainty into misinformation detection and spread prediction, providing an interdisciplinary and easily implementable framework for the field.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3