Continuous Monitoring of Heart Rate Variability and Respiration for the Remote Diagnosis of Chronic Obstructive Pulmonary Disease: Prospective Observational Study

Author:

Chen XiaolanORCID,Zhang HanORCID,Li ZhiwenORCID,Liu ShuangORCID,Zhou YuqiORCID

Abstract

Background Conventional daytime monitoring in a single day may be influenced by factors such as motion artifacts and emotions, and continuous monitoring of nighttime heart rate variability (HRV) and respiration to assist in chronic obstructive pulmonary disease (COPD) diagnosis has not been reported yet. Objective The aim of this study was to explore and compare the effects of continuously monitored HRV, heart rate (HR), and respiration during night sleep on the remote diagnosis of COPD. Methods We recruited patients with different severities of COPD and healthy controls between January 2021 and November 2022. Vital signs such as HRV, HR, and respiration were recorded using noncontact bed sensors from 10 PM to 8 AM of the following day, and the recordings of each patient lasted for at least 30 days. We obtained statistical means of HRV, HR, and respiration over time periods of 7, 14, and 30 days by continuous monitoring. Additionally, the effects that the statistical means of HRV, HR, and respiration had on COPD diagnosis were evaluated at different times of recordings. Results In this study, 146 individuals were enrolled: 37 patients with COPD in the case group and 109 participants in the control group. The median number of continuous night-sleep monitoring days per person was 56.5 (IQR 32.0-113.0) days. Using the features regarding the statistical means of HRV, HR, and respiration over 1, 7, 14, and 30 days, binary logistic regression classification of COPD yielded an accuracy, Youden index, and area under the receiver operating characteristic curve of 0.958, 0.904, and 0.989, respectively. The classification performance for COPD diagnosis was directionally proportional to the monitoring duration of vital signs at night. The importance of the features for diagnosis was determined by the statistical means of respiration, HRV, and HR, which followed the order of respiration > HRV > HR. Specifically, the statistical means of the duration of respiration rate faster than 21 times/min (RRF), high frequency band power of 0.15-0.40 Hz (HF), and respiration rate (RR) were identified as the top 3 most significant features for classification, corresponding to cutoff values of 0.1 minute, 1316.3 nU, and 16.3 times/min, respectively. Conclusions Continuous monitoring of nocturnal vital signs has significant potential for the remote diagnosis of COPD. As the duration of night-sleep monitoring increased from 1 to 30 days, the statistical means of HRV, HR, and respiration showed a better reflection of an individual's health condition compared to monitoring the vital signs in a single day or night, and better was the classification performance for COPD diagnosis. Further, the statistical means of RRF, HF, and RR are crucial features for diagnosing COPD, demonstrating the importance of monitoring HRV and respiration during night sleep.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3