Exploring the Use of Wearable Sensors and Natural Language Processing Technology to Improve Patient-Clinician Communication: Protocol for a Feasibility Study

Author:

LeBaron VirginiaORCID,Boukhechba MehdiORCID,Edwards JamesORCID,Flickinger TaborORCID,Ling DavidORCID,Barnes Laura EORCID

Abstract

Background Effective communication is the bedrock of quality health care, but it continues to be a major problem for patients, family caregivers, health care providers, and organizations. Although progress related to communication skills training for health care providers has been made, clinical practice and research gaps persist, particularly regarding how to best monitor, measure, and evaluate the implementation of communication skills in the actual clinical setting and provide timely feedback about communication effectiveness and quality. Objective Our interdisciplinary team of investigators aims to develop, and pilot test, a novel sensing system and associated natural language processing algorithms (CommSense) that can (1) be used on mobile devices, such as smartwatches; (2) reliably capture patient-clinician interactions in a clinical setting; and (3) process these communications to extract key markers of communication effectiveness and quality. The long-term goal of this research is to use CommSense in a variety of health care contexts to provide real-time feedback to end users to improve communication and patient health outcomes. Methods This is a 1-year pilot study. During Phase I (Aim 1), we will identify feasible metrics of communication to extract from conversations using CommSense. To achieve this, clinical investigators will conduct a thorough review of the recent health care communication and palliative care literature to develop an evidence-based “ideal and optimal” list of communication metrics. This list will be discussed collaboratively within the study team and consensus will be reached regarding the included items. In Phase II (Aim 2), we will develop the CommSense software by sharing the “ideal and optimal” list of communication metrics with engineering investigators to gauge technical feasibility. CommSense will build upon prior work using an existing Android smartwatch platform (SWear) and will include sensing modules that can collect (1) physiological metrics via embedded sensors to measure markers of stress (eg, heart rate variability), (2) gesture data via embedded accelerometer and gyroscope sensors, and (3) voice and ultimately textual features via the embedded microphone. In Phase III (Aim 3), we will pilot test the ability of CommSense to accurately extract identified communication metrics using simulated clinical scenarios with nurse and physician participants. Results Development of the CommSense platform began in November 2021, with participant recruitment expected to begin in summer 2022. We anticipate that preliminary results will be available in fall 2022. Conclusions CommSense is poised to make a valuable contribution to communication science, ubiquitous computing technologies, and natural language processing. We are particularly eager to explore the ability of CommSense to support effective virtual and remote health care interactions and reduce disparities related to patient-clinician communication in the context of serious illness. International Registered Report Identifier (IRRID) PRR1-10.2196/37975

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3