Predicting Patient Wait Times by Using Highly Deidentified Data in Mental Health Care: Enhanced Machine Learning Approach

Author:

Rastpour AmirORCID,McGregor CarolynORCID

Abstract

Background Wait times impact patient satisfaction, treatment effectiveness, and the efficiency of care that the patients receive. Wait time prediction in mental health is a complex task and is affected by the difficulty in predicting the required number of treatment sessions for outpatients, high no-show rates, and the possibility of using group treatment sessions. The task of wait time analysis becomes even more challenging if the input data has low utility, which happens when the data is highly deidentified by removing both direct and quasi identifiers. Objective The first aim of this study was to develop machine learning models to predict the wait time from referral to the first appointment for psychiatric outpatients by using real-time data. The second aim was to enhance the performance of these predictive models by utilizing the system’s knowledge while the input data were highly deidentified. The third aim was to identify the factors that drove long wait times, and the fourth aim was to build these models such that they were practical and easy-to-implement (and therefore, attractive to care providers). Methods We analyzed retrospective highly deidentified administrative data from 8 outpatient clinics at Ontario Shores Centre for Mental Health Sciences in Canada by using 6 machine learning methods to predict the first appointment wait time for new outpatients. We used the system’s knowledge to mitigate the low utility of our data. The data included 4187 patients who received care through 30,342 appointments. Results The average wait time varied widely between different types of mental health clinics. For more than half of the clinics, the average wait time was longer than 3 months. The number of scheduled appointments and the rate of no-shows varied widely among clinics. Despite these variations, the random forest method provided the minimum root mean square error values for 4 of the 8 clinics, and the second minimum root mean square error for the other 4 clinics. Utilizing the system’s knowledge increased the utility of our highly deidentified data and improved the predictive power of the models. Conclusions The random forest method, enhanced with the system’s knowledge, provided reliable wait time predictions for new outpatients, regardless of low utility of the highly deidentified input data and the high variation in wait times across different clinics and patient types. The priority system was identified as a factor that contributed to long wait times, and a fast-track system was suggested as a potential solution.

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

Reference50 articles.

1. The Relationship between Patient’s Perceived Waiting Time and Office-Based Practice Satisfaction

2. Patient Feedback on Waiting Time Displays

3. Machine Learning for Predicting Patient Wait Times and Appointment Delays

4. The impact of waiting time on patient outcomes: Evidence from early intervention in psychosis services in England

5. Kids can't wait: 2020 provincial budget recommendations for high-quality, accessible child and youth mental health and addictions care for all Ontario familiesChildren's Mental Health Ontario2022-07-30https://cmho.org/wp-content/uploads/CMHO-Report-WaitTimes-2020.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3