RWD-Cockpit: Application for Quality Assessment of Real-world Data

Author:

Babrak Lmar MarieORCID,Smakaj ErandORCID,Agac TeyfikORCID,Asprion Petra MariaORCID,Grimberg FrankORCID,der Werf Daan VanORCID,van Ginkel Erwin WillemORCID,Tosoni Deniz DavidORCID,Clay IeuanORCID,Degen MarkusORCID,Brodbeck DominiqueORCID,Natali Eriberto NoelORCID,Schkommodau ErikORCID,Miho EnkelejdaORCID

Abstract

Background Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence. Objective To address the need to qualify RWD, we aimed to build a web application as a tool to translate characterization of some quality parameters of RWD into a metric and propose a standard framework for evaluating the quality of the RWD. Methods The RWD-Cockpit systematically scores data sets based on proposed quality metrics and customizable variables chosen by the user. Sleep RWD generated de novo and publicly available data sets were used to validate the usability and applicability of the web application. The RWD quality score is based on the evaluation of 7 variables: manageability specifies access and publication status; complexity defines univariate, multivariate, and longitudinal data; sample size indicates the size of the sample or samples; privacy and liability stipulates privacy rules; accessibility specifies how the data set can be accessed and to what granularity; periodicity specifies how often the data set is updated; and standardization specifies whether the data set adheres to any specific technical or metadata standard. These variables are associated with several descriptors that define specific characteristics of the data set. Results To address the need to qualify RWD, we built the RWD-Cockpit web application, which proposes a framework and applies a common standard for a preliminary evaluation of RWD quality across data sets—molecular, phenotypical, and social—and proposes a standard that can be further personalized by the community retaining an internal standard. Applied to 2 different case studies—de novo–generated sleep data and publicly available data sets—the RWD-Cockpit could identify and provide researchers with variables that might increase quality. Conclusions The results from the application of the framework of RWD metrics implemented in the RWD-Cockpit application suggests that multiple data sets can be preliminarily evaluated in terms of quality using the proposed metrics. The output scores—quality identifiers—provide a first quality assessment for the use of RWD. Although extensive challenges remain to be addressed to set RWD quality standards, our proposal can serve as an initial blueprint for community efforts in the characterization of RWD quality for regulated settings.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference46 articles.

1. What Is Real-World Data? A Review of Definitions Based on Literature and Stakeholder Interviews

2. U.S. Department of Health and Human Services Food and Drug AdministrationCenter for Devices and Radiological HealthCenter for Biologics Evaluation and ResearchUse of real-world evidence to support regulatory decision-making for medical devices: guidance for industry and food and drug administration staffU.S. Food & Drug Administration20172022-03-24https://www.fda.gov/media/99447/download

3. Inventory of real world data sources in Parkinson’s disease

4. Real world evidence (RWE) – a disruptive innovation or the quiet evolution of medical evidence generation?

5. Real world data: an opportunity to supplement existing evidence for the use of long-established medicines in health care decision making

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3