A Knowledge Graph of Combined Drug Therapies Using Semantic Predications From Biomedical Literature: Algorithm Development

Author:

Du JianORCID,Li XiaoyingORCID

Abstract

Background Combination therapy plays an important role in the effective treatment of malignant neoplasms and precision medicine. Numerous clinical studies have been carried out to investigate combination drug therapies. Automated knowledge discovery of these combinations and their graphic representation in knowledge graphs will enable pattern recognition and identification of drug combinations used to treat a specific type of cancer, improve drug efficacy and treatment of human disorders. Objective This paper aims to develop an automated, visual approach to discover knowledge about combination therapies from biomedical literature, especially from those studies with high-level evidence such as clinical trial reports and clinical practice guidelines. Methods Based on semantic predications, which consist of a triple structure of subject-predicate-object (SPO), we proposed an automated algorithm to discover knowledge of combination drug therapies using the following rules: 1) two or more semantic predications (S1-P-O and Si-P-O, i = 2, 3…) can be extracted from one conclusive claim (sentence) in the abstract of a given publication, and 2) these predications have an identical predicate (that closely relates to human disease treatment, eg, “treat”) and object (eg, disease name) but different subjects (eg, drug names). A customized knowledge graph organizes and visualizes these combinations, improving the traditional semantic triples. After automatic filtering of broad concepts such as “pharmacologic actions” and generic disease names, a set of combination drug therapies were identified and characterized through manual interpretation. Results We retrieved 22,263 clinical trial reports and 31 clinical practice guidelines from PubMed abstracts by searching “antineoplastic agents” for drug restriction (published between Jan 2009 and Oct 2019). There were 15,603 conclusive claims locally parsed using the search terms “conclusion*” and “conclude*” ready for semantic predications extraction by SemRep, and 325 candidate groups of semantic predications about combined medications were automatically discovered within 316 conclusive claims. Based on manual analysis, we determined that 255/316 claims (78.46%) were accurately identified as describing combination therapies and adopted these to construct the customized knowledge graph. We also identified two categories (and 4 subcategories) to characterize the inaccurate results: limitations of SemRep and limitations of proposal. We further learned the predominant patterns of drug combinations based on mechanism of action for new combined medication studies and discovered 4 obvious markers (“combin*,” “coadministration,” “co-administered,” and “regimen”) to identify potential combination therapies to enable development of a machine learning algorithm. Conclusions Semantic predications from conclusive claims in the biomedical literature can be used to support automated knowledge discovery and knowledge graph construction for combination therapies. A machine learning approach is warranted to take full advantage of the identified markers and other contextual features.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3