Abstract
Background
Obesity surgery has proven its effectiveness in weight loss. However, after a loss phase of about 12 to 18 months, between 20% and 40% of patients regain weight. Prediction of weight evolution is therefore useful for early detection of weight regain.
Objective
This proof-of-concept study aimed to analyze the postoperative weight trajectories and to identify “curve families” for early prediction of weight regain.
Methods
This was a monocentric retrospective study with calculation of the weight trajectory of patients having undergone gastric bypass surgery. Data on 795 patients after a 2-year follow-up allowed modeling of weight trajectories according to a hierarchical cluster analysis (HCA) tending to minimize the intragroup distance according to Ward. Clinical judgement was used to finalize the identification of clinically relevant representative trajectories. This modeling was validated on a group of 381 patients for whom the observed weight at 18 months was compared to the predicted weight.
Results
Two successive HCA produced 14 representative trajectories, distributed among 4 clinically relevant families: Of the 14 weight trajectories, 6 decreased systematically over time or decreased and then stagnated; 4 decreased, increased, and then decreased again; 2 decreased and then increased; and 2 stagnated at first and then began to decrease. A comparison of observed weight and that estimated by modeling made it possible to correctly classify 98% of persons with excess weight loss (EWL) >50% and more than 58% of persons with EWL between 25% and 50%. In the category of persons with EWL >50%, weight data over the first 6 months were adequate to correctly predict the observed result.
Conclusions
This modeling allowed correct classification of persons with EWL >50% and could identify early after surgery the patients with potentially less that optimal weight loss. Further studies are needed to validate this model in other populations, with other types of surgery, and with other medical-surgical teams.
Subject
Health Information Management,Health Informatics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献