Estimating the Epidemic Size of Superspreading Coronavirus Outbreaks in Real Time: Quantitative Study

Author:

Lau Kitty YORCID,Kang JianORCID,Park MinahORCID,Leung GabrielORCID,Wu Joseph TORCID,Leung KathyORCID

Abstract

Background Novel coronaviruses have emerged and caused major epidemics and pandemics in the past 2 decades, including SARS-CoV-1, MERS-CoV, and SARS-CoV-2, which led to the current COVID-19 pandemic. These coronaviruses are marked by their potential to produce disproportionally large transmission clusters from superspreading events (SSEs). As prompt action is crucial to contain and mitigate SSEs, real-time epidemic size estimation could characterize the transmission heterogeneity and inform timely implementation of control measures. Objective This study aimed to estimate the epidemic size of SSEs to inform effective surveillance and rapid mitigation responses. Methods We developed a statistical framework based on back-calculation to estimate the epidemic size of ongoing coronavirus SSEs. We first validated the framework in simulated scenarios with the epidemiological characteristics of SARS, MERS, and COVID-19 SSEs. As case studies, we retrospectively applied the framework to the Amoy Gardens SARS outbreak in Hong Kong in 2003, a series of nosocomial MERS outbreaks in South Korea in 2015, and 2 COVID-19 outbreaks originating from restaurants in Hong Kong in 2020. Results The accuracy and precision of the estimation of epidemic size of SSEs improved with longer observation time; larger SSE size; and more accurate prior information about the epidemiological characteristics, such as the distribution of the incubation period and the distribution of the onset-to-confirmation delay. By retrospectively applying the framework, we found that the 95% credible interval of the estimates contained the true epidemic size after 37% of cases were reported in the Amoy Garden SARS SSE in Hong Kong, 41% to 62% of cases were observed in the 3 nosocomial MERS SSEs in South Korea, and 76% to 86% of cases were confirmed in the 2 COVID-19 SSEs in Hong Kong. Conclusions Our framework can be readily integrated into coronavirus surveillance systems to enhance situation awareness of ongoing SSEs.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3