Applying the Health Belief Model to Characterize Racial/Ethnic Differences in Digital Conversations Related to Depression Pre- and Mid-COVID-19: Descriptive Analysis

Author:

Castilla-Puentes RubyORCID,Pesa JacquelineORCID,Brethenoux CarolineORCID,Furey PatrickORCID,Gil Valletta LilianaORCID,Falcone TatianaORCID

Abstract

Background The prevalence of depression in the United States is >3 times higher mid-COVID-19 versus prepandemic. Racial/ethnic differences in mindsets around depression and the potential impact of the COVID-19 pandemic are not well characterized. Objective This study aims to describe attitudes, mindsets, key drivers, and barriers related to depression pre- and mid-COVID-19 by race/ethnicity using digital conversations about depression mapped to health belief model (HBM) concepts. Methods Advanced search, data extraction, and artificial intelligence–powered tools were used to harvest, mine, and structure open-source digital conversations of US adults who engaged in conversations about depression pre- (February 1, 2019-February 29, 2020) and mid-COVID-19 pandemic (March 1, 2020-November 1, 2020) across the internet. Natural language processing, text analytics, and social data mining were used to categorize conversations that included a self-identifier into racial/ethnic groups. Conversations were mapped to HBM concepts (ie, perceived susceptibility, perceived severity, perceived benefits, perceived barriers, cues to action, and self-efficacy). Results are descriptive in nature. Results Of 2.9 and 1.3 million relevant digital conversations pre- and mid-COVID-19, race/ethnicity was determined among 1.8 million (62.2%) and 979,000 (75.3%) conversations, respectively. Pre-COVID-19, 1.3 million (72.1%) conversations about depression were analyzed among non-Hispanic Whites (NHW), 227,200 (12.6%) among Black Americans (BA), 189,200 (10.5%) among Hispanics, and 86,800 (4.8%) among Asian Americans (AS). Mid-COVID-19, a total of 736,100 (75.2%) conversations about depression were analyzed among NHW, 131,800 (13.5%) among BA, 78,300 (8.0%) among Hispanics, and 32,800 (3.3%) among AS. Conversations among all racial/ethnic groups had a negative tone, which increased pre- to mid-COVID-19; finding support from others was seen as a benefit among most groups. Hispanics had the highest rate of any racial/ethnic group of conversations showing an avoiding mindset toward their depression. Conversations related to external barriers to seeking treatment (eg, stigma, lack of support, and lack of resources) were generally more prevalent among Hispanics, BA, and AS than among NHW. Being able to benefit others and building a support system were key drivers to seeking help or treatment for all racial/ethnic groups. Conclusions There were considerable racial/ethnic differences in drivers and barriers to seeking help and treatment for depression pre- and mid-COVID-19. As expected, COVID-19 has made conversations about depression more negative and with frequent discussions of barriers to seeking care. Applying concepts of the HBM to data on digital conversation about depression allowed organization of the most frequent themes by race/ethnicity. Individuals of all groups came online to discuss their depression. These data highlight opportunities for culturally competent and targeted approaches to addressing areas amenable to change that might impact the ability of people to ask for or receive mental health help, such as the constructs that comprise the HBM.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3