A Comprehensive Youth Diabetes Epidemiological Data Set and Web Portal: Resource Development and Case Studies

Author:

McDonough CatherineORCID,Li Yan ChakORCID,Vangeepuram NitaORCID,Liu BianORCID,Pandey GauravORCID

Abstract

Background The prevalence of type 2 diabetes mellitus (DM) and pre–diabetes mellitus (pre-DM) has been increasing among youth in recent decades in the United States, prompting an urgent need for understanding and identifying their associated risk factors. Such efforts, however, have been hindered by the lack of easily accessible youth pre-DM/DM data. Objective We aimed to first build a high-quality, comprehensive epidemiological data set focused on youth pre-DM/DM. Subsequently, we aimed to make these data accessible by creating a user-friendly web portal to share them and the corresponding codes. Through this, we hope to address this significant gap and facilitate youth pre-DM/DM research. Methods Building on data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we cleaned and harmonized hundreds of variables relevant to pre-DM/DM (fasting plasma glucose level ≥100 mg/dL or glycated hemoglobin  ≥5.7%) for youth aged 12-19 years (N=15,149). We identified individual factors associated with pre-DM/DM risk using bivariate statistical analyses and predicted pre-DM/DM status using our Ensemble Integration (EI) framework for multidomain machine learning. We then developed a user-friendly web portal named Prediabetes/diabetes in youth Online Dashboard (POND) to share the data and codes. Results We extracted 95 variables potentially relevant to pre-DM/DM risk organized into 4 domains (sociodemographic, health status, diet, and other lifestyle behaviors). The bivariate analyses identified 27 significant correlates of pre-DM/DM (P<.001, Bonferroni adjusted), including race or ethnicity, health insurance, BMI, added sugar intake, and screen time. Among these factors, 16 factors were also identified based on the EI methodology (Fisher P of overlap=7.06×106). In addition to those, the EI approach identified 11 additional predictive variables, including some known (eg, meat and fruit intake and family income) and less recognized factors (eg, number of rooms in homes). The factors identified in both analyses spanned across all 4 of the domains mentioned. These data and results, as well as other exploratory tools, can be accessed on POND. Conclusions Using NHANES data, we built one of the largest public epidemiological data sets for studying youth pre-DM/DM and identified potential risk factors using complementary analytical approaches. Our results align with the multifactorial nature of pre-DM/DM with correlates across several domains. Also, our data-sharing platform, POND, facilitates a wide range of applications to inform future youth pre-DM/DM studies.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3