Construction of Cohorts of Similar Patients From Automatic Extraction of Medical Concepts: Phenotype Extraction Study

Author:

Gérardin ChristelORCID,Mageau ArthurORCID,Mékinian ArsèneORCID,Tannier XavierORCID,Carrat FabriceORCID

Abstract

Background Reliable and interpretable automatic extraction of clinical phenotypes from large electronic medical record databases remains a challenge, especially in a language other than English. Objective We aimed to provide an automated end-to-end extraction of cohorts of similar patients from electronic health records for systemic diseases. Methods Our multistep algorithm includes a named-entity recognition step, a multilabel classification using medical subject headings ontology, and the computation of patient similarity. A selection of cohorts of similar patients on a priori annotated phenotypes was performed. Six phenotypes were selected for their clinical significance: P1, osteoporosis; P2, nephritis in systemic erythematosus lupus; P3, interstitial lung disease in systemic sclerosis; P4, lung infection; P5, obstetric antiphospholipid syndrome; and P6, Takayasu arteritis. We used a training set of 151 clinical notes and an independent validation set of 256 clinical notes, with annotated phenotypes, both extracted from the Assistance Publique-Hôpitaux de Paris data warehouse. We evaluated the precision of the 3 patients closest to the index patient for each phenotype with precision-at-3 and recall and average precision. Results For P1-P4, the precision-at-3 ranged from 0.85 (95% CI 0.75-0.95) to 0.99 (95% CI 0.98-1), the recall ranged from 0.53 (95% CI 0.50-0.55) to 0.83 (95% CI 0.81-0.84), and the average precision ranged from 0.58 (95% CI 0.54-0.62) to 0.88 (95% CI 0.85-0.90). P5-P6 phenotypes could not be analyzed due to the limited number of phenotypes. Conclusions Using a method close to clinical reasoning, we built a scalable and interpretable end-to-end algorithm for extracting cohorts of similar patients.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural Language Processing in Electronic Health Record Mining for Clinical Decision Support;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

2. AB1767-HPR DOCUMENT SEARCH IN LARGE RHEUMATOLOGY DATABASES: ADVANCED KEYWORD QUERIES TO SELECT HOMOGENEOUS PHENOTYPES;Health Professionals in Rheumatology Abstracts;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3