Comprehensive Computer-Aided Decision Support Framework to Diagnose Tuberculosis From Chest X-Ray Images: Data Mining Study

Author:

Owais MuhammadORCID,Arsalan MuhammadORCID,Mahmood TahirORCID,Kim Yu HwanORCID,Park Kang RyoungORCID

Abstract

Background Tuberculosis (TB) is one of the most infectious diseases that can be fatal. Its early diagnosis and treatment can significantly reduce the mortality rate. In the literature, several computer-aided diagnosis (CAD) tools have been proposed for the efficient diagnosis of TB from chest radiograph (CXR) images. However, the majority of previous studies adopted conventional handcrafted feature-based algorithms. In addition, some recent CAD tools utilized the strength of deep learning methods to further enhance diagnostic performance. Nevertheless, all these existing methods can only classify a given CXR image into binary class (either TB positive or TB negative) without providing further descriptive information. Objective The main objective of this study is to propose a comprehensive CAD framework for the effective diagnosis of TB by providing visual as well as descriptive information from the previous patients’ database. Methods To accomplish our objective, first we propose a fusion-based deep classification network for the CAD decision that exhibits promising performance over the various state-of-the-art methods. Furthermore, a multilevel similarity measure algorithm is devised based on multiscale information fusion to retrieve the best-matched cases from the previous database. Results The performance of the framework was evaluated based on 2 well-known CXR data sets made available by the US National Library of Medicine and the National Institutes of Health. Our classification model exhibited the best diagnostic performance (0.929, 0.937, 0.921, 0.928, and 0.965 for F1 score, average precision, average recall, accuracy, and area under the curve, respectively) and outperforms the performance of various state-of-the-art methods. Conclusions This paper presents a comprehensive CAD framework to diagnose TB from CXR images by retrieving the relevant cases and their clinical observations from the previous patients’ database. These retrieval results assist the radiologist in making an effective diagnostic decision related to the current medical condition of a patient. Moreover, the retrieval results can facilitate the radiologists in subjectively validating the CAD decision.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early diagnosis and meta-agnostic model visualization of tuberculosis based on radiography images;Scientific Reports;2023-12-20

2. CT Image Detection of Pulmonary Tuberculosis Based on the Improved Strategy YOLOv5;International Journal of Swarm Intelligence Research;2023-08-29

3. Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review;Journal of Medical Internet Research;2023-07-03

4. Classification and Prediction of Lung Diseases According to Chest Radiography;2023 IV International Conference on Neural Networks and Neurotechnologies (NeuroNT);2023-06-16

5. AI-based radiodiagnosis using chest X-rays: A review;Frontiers in Big Data;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3