Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial

Author:

Wilimitis DrewORCID,Walsh Colin GORCID

Abstract

Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial might improve the community’s understanding of these important methods while catalyzing the modeling community to apply these guides directly in their work using the published code.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3