Determining Acceptance of e-Mental Health Interventions in Digital Psychodiabetology Using a Quantitative Web-Based Survey: Cross-sectional Study

Author:

Damerau MirjamORCID,Teufel MartinORCID,Musche VenjaORCID,Dinse HannahORCID,Schweda AdamORCID,Beckord JilORCID,Steinbach JasminORCID,Schmidt KiraORCID,Skoda Eva-MariaORCID,Bäuerle AlexanderORCID

Abstract

Background Diabetes is a very common chronic disease that exerts massive physiological and psychological burdens on patients. The digitalization of mental health care has generated effective e-mental health approaches, which offer an indubitable practical value for patient treatment. However, before implementing and optimizing e-mental health tools, their acceptance and underlying barriers and resources should be first determined for developing and establishing effective patient-oriented interventions. Objective This study aims to assess the acceptance of e-mental health interventions among patients with diabetes and explore its underlying barriers and resources. Methods A cross-sectional study was conducted in Germany from April 9, 2020, to June 15, 2020, through a web-based survey for which patients were recruited via web-based diabetes channels. The eligibility requirements were adult age (18 years or older), a good command of the German language, internet access, and a diagnosis of diabetes. Acceptance was measured using a modified questionnaire, which was based on the well-established Unified Theory of Acceptance and Use of Technology (UTAUT) and assessed health-related internet use, acceptance of e-mental health interventions, and its barriers and resources. Mental health was measured using validated and established instruments, namely the Generalized Anxiety Disorder Scale-7, Patient Health Questionnaire-2, and Distress Thermometer. In addition, sociodemographic and medical data regarding diabetes were collected. Results Of the 340 participants who started the survey, 261 (76.8%) completed it and the final sample comprised 258 participants with complete data sets. The acceptance of e-mental health interventions in patients with diabetes was overall moderate (mean 3.02, SD 1.14). Gender and having a mental disorder had a significant influence on acceptance (P<.001). In an extended UTAUT regression model (UTAUT predictors plus sociodemographics and mental health variables), distress (β=.11; P=.03) as well as the UTAUT predictors performance expectancy (β=.50; P<.001), effort expectancy (β=.15; P=.001), and social influence (β=.28; P<.001) significantly predicted acceptance. The comparison between an extended UTAUT regression model (13 predictors) and the UTAUT-only regression model (performance expectancy, effort expectancy, social influence) revealed no significant difference in explained variance (F10,244=1.567; P=.12). Conclusions This study supports the viability of the UTAUT model and its predictors in assessing the acceptance of e-mental health interventions among patients with diabetes. Three UTAUT predictors reached a notable amount of explained variance of 75% in the acceptance, indicating that it is a very useful and efficient method for measuring e-mental health intervention acceptance in patients with diabetes. Owing to the close link between acceptance and use, acceptance-facilitating interventions focusing on these three UTAUT predictors should be fostered to bring forward the highly needed establishment of effective e-mental health interventions in psychodiabetology.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3