Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study

Author:

Yun DonghwanORCID,Cho SeminORCID,Kim Yong ChulORCID,Kim Dong KiORCID,Oh Kook-HwanORCID,Joo Kwon WookORCID,Kim Yon SuORCID,Han Seung SeokORCID

Abstract

Background Precise prediction of contrast media–induced acute kidney injury (CIAKI) is an important issue because of its relationship with poor outcomes. Objective Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than other machine learning and logistic regression models in patients undergoing computed tomography (CT). Methods A total of 14,185 patients who were administered intravenous contrast media for CT at the preventive and monitoring facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine of ≥0.3 mg/dL within 2 days or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such as the recurrent neural network (RNN), light gradient boosting machine (LGM), extreme gradient boosting machine (XGB), random forest (RF), decision tree (DT), support vector machine (SVM), κ-nearest neighbors, and logistic regression, were developed using a training set, and their performance was compared using the area under the receiver operating characteristic curve (AUROC) in a test set. Results CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC of 0.755 (0.708-0.802) for predicting CIAKI, which was superior to that obtained from other machine learning models. Although CIAKI was defined as an increase in serum creatinine of ≥0.5 mg/dL or ≥25% within 3 days, the highest performance was achieved in the RNN model with an AUROC of 0.716 (95% confidence interval [CI] 0.664-0.768). In feature ranking analysis, the albumin level was the most highly contributing factor to RNN performance, followed by time-varying kidney function. Conclusions Application of a deep learning algorithm improves the predictability of intravenous CIAKI after CT, representing a basis for future clinical alarming and preventive systems.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3