Using Automated Machine Learning to Predict Necessary Upcoming Therapy Changes in Patients With Psoriasis Vulgaris and Psoriatic Arthritis and Uncover New Influences on Disease Progression: Retrospective Study

Author:

Schaffert DanielORCID,Bibi IgorORCID,Blauth MaraORCID,Lull ChristianORCID,von Ahnen Jan AlwinORCID,Gross GeorgORCID,Schulze-Hagen TheresaORCID,Knitza JohannesORCID,Kuhn SebastianORCID,Benecke JohannesORCID,Schmieder AstridORCID,Leipe JanORCID,Olsavszky VictorORCID

Abstract

Background Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are complex, multifactorial diseases significantly impacting health and quality of life. Predicting treatment response and disease progression is crucial for optimizing therapeutic interventions, yet challenging. Automated machine learning (AutoML) technology shows promise for rapidly creating accurate predictive models based on patient features and treatment data. Objective This study aims to develop highly accurate machine learning (ML) models using AutoML to address key clinical questions for PsV and PsA patients, including predicting therapy changes, identifying reasons for therapy changes, and factors influencing skin lesion progression or an abnormal Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score. Methods Clinical study data from 309 PsV and PsA patients were extensively prepared and analyzed using AutoML to build and select the most accurate predictive models for each variable of interest. Results Therapy change at 24 weeks follow-up was modeled using the extreme gradient boosted trees classifier with early stopping (area under the receiver operating characteristic curve [AUC] of 0.9078 and logarithmic loss [LogLoss] of 0.3955 for the holdout partition). Key influencing factors included the initial systemic therapeutic agent, the Classification Criteria for Psoriatic Arthritis score at baseline, and changes in quality of life. An average blender incorporating three models (gradient boosted trees classifier, ExtraTrees classifier, and Eureqa generalized additive model classifier) with an AUC of 0.8750 and LogLoss of 0.4603 was used to predict therapy changes for 2 hypothetical patients, highlighting the significance of these factors. Treatments such as methotrexate or specific biologicals showed a lower propensity for change. An average blender of a random forest classifier, an extreme gradient boosted trees classifier, and a Eureqa classifier (AUC of 0.9241 and LogLoss of 0.4498) was used to estimate PASI (Psoriasis Area and Severity Index) change after 24 weeks. Primary predictors included the initial PASI score, change in pruritus levels, and change in therapy. A lower initial PASI score and consistently low pruritus were associated with better outcomes. BASDAI classification at onset was analyzed using an average blender of a Eureqa generalized additive model classifier, an extreme gradient boosted trees classifier with early stopping, and a dropout additive regression trees classifier with an AUC of 0.8274 and LogLoss of 0.5037. Influential factors included initial pain, disease activity, and Hospital Anxiety and Depression Scale scores for depression and anxiety. Increased pain, disease activity, and psychological distress generally led to higher BASDAI scores. Conclusions The practical implications of these models for clinical decision-making in PsV and PsA can guide early investigation and treatment, contributing to improved patient outcomes.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3