Assessing the Food and Drug Administration’s Risk-Based Framework for Software Precertification With Top Health Apps in the United States: Quality Improvement Study

Author:

Alon NoyORCID,Stern Ariel DoraORCID,Torous JohnORCID

Abstract

Background As the development of mobile health apps continues to accelerate, the need to implement a framework that can standardize the categorization of these apps to allow for efficient yet robust regulation is growing. However, regulators and researchers are faced with numerous challenges, as apps have a wide variety of features, constant updates, and fluid use cases for consumers. As past regulatory efforts have failed to match the rapid innovation of these apps, the US Food and Drug Administration (FDA) has proposed that the Software Precertification (Pre-Cert) Program and a new risk-based framework could be the solution. Objective This study aims to determine whether the risk-based framework proposed by the FDA’s Pre-Cert Program could standardize categorization of top health apps in the United States. Methods In this quality improvement study during summer 2019, the top 10 apps for 6 disease conditions (addiction, anxiety, depression, diabetes, high blood pressure, and schizophrenia) in Apple iTunes and Android Google Play Store in the United States were classified using the FDA’s risk-based framework. Data on the presence of well-defined app features, user engagement methods, popularity metrics, medical claims, and scientific backing were collected. Results The FDA’s risk-based framework classifies an app’s risk by the disease condition it targets and what information that app provides. Of the 120 apps tested, 95 apps were categorized as targeting a nonserious health condition, whereas only 7 were categorized as targeting a serious condition and 18 were categorized as targeting a critical condition. As the majority of apps targeted a nonserious condition, their risk categorization was largely determined by the information they provided. The apps that were assessed as not requiring FDA review were more likely to be associated with the integration of external devices than those assessed as requiring FDA review (15/58, 26% vs 5/62, 8%; P=.03) and health information collection (24/58, 41% vs 9/62, 15%; P=.008). Apps exempt from the review were less likely to offer health information (25/58, 43% vs 45/62, 72%; P<.001), to connect users with professional care (7/58, 12% vs 14/62, 23%; P=.04), and to include an intervention (8/58, 14% vs 35/62, 55%; P<.001). Conclusions The FDA’s risk-based framework has the potential to improve the efficiency of the regulatory review process for health apps. However, we were unable to identify a standard measure that differentiated apps requiring regulatory review from those that would not. Apps exempt from the review also carried concerns regarding privacy and data security. Before the framework is used to assess the need for a formal review of digital health tools, further research and regulatory guidance are needed to ensure that the Pre-Cert Program operates in the greatest interest of public health.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3