Classifying COVID-19 Patients From Chest X-ray Images Using Hybrid Machine Learning Techniques: Development and Evaluation

Author:

Phumkuea ThanakornORCID,Wongsirichot ThakerngORCID,Damkliang KasikritORCID,Navasakulpong AsmaORCID

Abstract

Background The COVID-19 pandemic has raised global concern, with moderate to severe cases displaying lung inflammation and respiratory failure. Chest x-ray (CXR) imaging is crucial for diagnosis and is usually interpreted by experienced medical specialists. Machine learning has been applied with acceptable accuracy, but computational efficiency has received less attention. Objective We introduced a novel hybrid machine learning model to accurately classify COVID-19, non-COVID-19, and healthy patients from CXR images with reduced computational time and promising results. Our proposed model was thoroughly evaluated and compared with existing models. Methods A retrospective study was conducted to analyze 5 public data sets containing 4200 CXR images using machine learning techniques including decision trees, support vector machines, and neural networks. The images were preprocessed to undergo image segmentation, enhancement, and feature extraction. The best performing machine learning technique was selected and combined into a multilayer hybrid classification model for COVID-19 (MLHC-COVID-19). The model consisted of 2 layers. The first layer was designed to differentiate healthy individuals from infected patients, while the second layer aimed to classify COVID-19 and non-COVID-19 patients. Results The MLHC-COVID-19 model was trained and evaluated on unseen COVID-19 CXR images, achieving reasonably high accuracy and F measures of 0.962 and 0.962, respectively. These results show the effectiveness of the MLHC-COVID-19 in classifying COVID-19 CXR images, with improved accuracy and a reduction in interpretation time. The model was also embedded into a web-based MLHC-COVID-19 computer-aided diagnosis system, which was made publicly available. Conclusions The study found that the MLHC-COVID-19 model effectively differentiated CXR images of COVID-19 patients from those of healthy and non-COVID-19 individuals. It outperformed other state-of-the-art deep learning techniques and showed promising results. These results suggest that the MLHC-COVID-19 model could have been instrumental in early detection and diagnosis of COVID-19 patients, thus playing a significant role in controlling and managing the pandemic. Although the pandemic has slowed down, this model can be adapted and utilized for future similar situations. The model was also integrated into a publicly accessible web-based computer-aided diagnosis system.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference61 articles.

1. COVID-19 pathophysiology: A review

2. COVID-19 Weekly Epidemiological UpdateWorld Health Organization202101102023-02-18https://www.who.int/docs/default-source/coronaviruse/situation-reports/weekly_epidemiological_update_22.pdf

3. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2

4. A Review of Coronavirus Disease-2019 (COVID-19)

5. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3