Effect of an Internet–Delivered Cognitive Behavioral Therapy–Based Sleep Improvement App for Shift Workers at High Risk of Sleep Disorder: Single-Arm, Nonrandomized Trial

Author:

Ito-Masui AsamiORCID,Sakamoto RyotaORCID,Matsuo EriORCID,Kawamoto EijiORCID,Motomura EishiORCID,Tanii HisashiORCID,Yu HanORCID,Sano AkaneORCID,Imai HiroshiORCID,Shimaoka MotomuORCID

Abstract

Background Shift workers are at high risk of developing sleep disorders such as shift worker sleep disorder or chronic insomnia. Cognitive behavioral therapy (CBT) is the first-line treatment for insomnia, and emerging evidence shows that internet-based CBT is highly effective with additional features such as continuous tracking and personalization. However, there are limited studies on internet-based CBT for shift workers with sleep disorders. Objective This study aimed to evaluate the impact of a 4-week, physician-assisted, internet-delivered CBT program incorporating machine learning–based well-being prediction on the sleep duration of shift workers at high risk of sleep disorders. We evaluated these outcomes using an internet-delivered CBT app and fitness trackers in the intensive care unit. Methods A convenience sample of 61 shift workers (mean age 32.9, SD 8.3 years) from the intensive care unit or emergency department participated in the study. Eligible participants were on a 3-shift schedule and had a Pittsburgh Sleep Quality Index score ≥5. The study comprised a 1-week baseline period, followed by a 4-week intervention period. Before the study, the participants completed questionnaires regarding the subjective evaluation of sleep, burnout syndrome, and mental health. Participants were asked to wear a commercial fitness tracker to track their daily activities, heart rate, and sleep for 5 weeks. The internet-delivered CBT program included well-being prediction, activity and sleep chart, and sleep advice. A job-based multitask and multilabel convolutional neural network–based model was used for well-being prediction. Participant-specific sleep advice was provided by sleep physicians based on daily surveys and fitness tracker data. The primary end point of this study was sleep duration. For continuous measurements (sleep duration, steps, etc), the mean baseline and week-4 intervention data were compared. The 2-tailed paired t test or Wilcoxon signed rank test was performed depending on the distribution of the data. Results In the fourth week of intervention, the mean daily sleep duration for 7 days (6.06, SD 1.30 hours) showed a statistically significant increase compared with the baseline (5.54, SD 1.36 hours; P=.02). Subjective sleep quality, as measured by the Pittsburgh Sleep Quality Index, also showed statistically significant improvement from baseline (9.10) to after the intervention (7.84; P=.001). However, no significant improvement was found in the subjective well-being scores (all P>.05). Feature importance analysis for all 45 variables in the prediction model showed that sleep duration had the highest importance. Conclusions The physician-assisted internet-delivered CBT program targeting shift workers with a high risk of sleep disorders showed a statistically significant increase in sleep duration as measured by wearable sensors along with subjective sleep quality. This study shows that sleep improvement programs using an app and wearable sensors are feasible and may play an important role in preventing shift work–related sleep disorders. International Registered Report Identifier (IRRID) RR2-10.2196/24799.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3