Deep Learning–Based Identification of Tissue of Origin for Carcinomas of Unknown Primary Using MicroRNA Expression: Algorithm Development and Validation

Author:

Raghu AnanyaORCID,Raghu AnishaORCID,Wise Jillian FORCID

Abstract

Background Carcinoma of unknown primary (CUP) is a subset of metastatic cancers in which the primary tissue source of the cancer cells remains unidentified. CUP is the eighth most common malignancy worldwide, accounting for up to 5% of all malignancies. Representing an exceptionally aggressive metastatic cancer, the median survival is approximately 3 to 6 months. The tissue in which cancer arises plays a key role in our understanding of sensitivities to various forms of cell death. Thus, the lack of knowledge on the tissue of origin (TOO) makes it difficult to devise tailored and effective treatments for patients with CUP. Developing quick and clinically implementable methods to identify the TOO of the primary site is crucial in treating patients with CUP. Noncoding RNAs may hold potential for origin identification and provide a robust route to clinical implementation due to their resistance against chemical degradation. Objective This study aims to investigate the potential of microRNAs, a subset of noncoding RNAs, as highly accurate biomarkers for detecting the TOO through data-driven, machine learning approaches for metastatic cancers. Methods We used microRNA expression data from The Cancer Genome Atlas data set and assessed various machine learning approaches, from simple classifiers to deep learning approaches. As a test of our classifiers, we evaluated the accuracy on a separate set of 194 primary tumor samples from the Sequence Read Archive. We used permutation feature importance to determine the potential microRNA biomarkers and assessed them with principal component analysis and t-distributed stochastic neighbor embedding visualizations. Results Our results show that it is possible to design robust classifiers to detect the TOO for metastatic samples on The Cancer Genome Atlas data set, with an accuracy of up to 97% (351/362), which may be used in situations of CUP. Our findings show that deep learning techniques enhance prediction accuracy. We progressed from an initial accuracy prediction of 62.5% (226/362) with decision trees to 93.2% (337/362) with logistic regression, finally achieving 97% (351/362) accuracy using deep learning on metastatic samples. On the Sequence Read Archive validation set, a lower accuracy of 41.2% (77/188) was achieved by the decision tree, while deep learning achieved a higher accuracy of 80.4% (151/188). Notably, our feature importance analysis showed the top 3 most important features for predicting TOO to be microRNA-10b, microRNA-205, and microRNA-196b, which aligns with previous work. Conclusions Our findings highlight the potential of using machine learning techniques to devise accurate tests for detecting TOO for CUP. Since microRNAs are carried throughout the body via extracellular vesicles secreted from cells, they may serve as key biomarkers for liquid biopsy due to their presence in blood plasma. Our work serves as a foundation toward developing blood-based cancer detection tests based on the presence of microRNA.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3