Implementing AI in Hospitals to Achieve a Learning Health System: Systematic Review of Current Enablers and Barriers

Author:

Kamel Rahimi AmirORCID,Pienaar OliverORCID,Ghadimi MojiORCID,Canfell Oliver JORCID,Pole Jason DORCID,Shrapnel SallyORCID,van der Vegt Anton HORCID,Sullivan ClairORCID

Abstract

Background Efforts are underway to capitalize on the computational power of the data collected in electronic medical records (EMRs) to achieve a learning health system (LHS). Artificial intelligence (AI) in health care has promised to improve clinical outcomes, and many researchers are developing AI algorithms on retrospective data sets. Integrating these algorithms with real-time EMR data is rare. There is a poor understanding of the current enablers and barriers to empower this shift from data set–based use to real-time implementation of AI in health systems. Exploring these factors holds promise for uncovering actionable insights toward the successful integration of AI into clinical workflows. Objective The first objective was to conduct a systematic literature review to identify the evidence of enablers and barriers regarding the real-world implementation of AI in hospital settings. The second objective was to map the identified enablers and barriers to a 3-horizon framework to enable the successful digital health transformation of hospitals to achieve an LHS. Methods The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were adhered to. PubMed, Scopus, Web of Science, and IEEE Xplore were searched for studies published between January 2010 and January 2022. Articles with case studies and guidelines on the implementation of AI analytics in hospital settings using EMR data were included. We excluded studies conducted in primary and community care settings. Quality assessment of the identified papers was conducted using the Mixed Methods Appraisal Tool and ADAPTE frameworks. We coded evidence from the included studies that related to enablers of and barriers to AI implementation. The findings were mapped to the 3-horizon framework to provide a road map for hospitals to integrate AI analytics. Results Of the 1247 studies screened, 26 (2.09%) met the inclusion criteria. In total, 65% (17/26) of the studies implemented AI analytics for enhancing the care of hospitalized patients, whereas the remaining 35% (9/26) provided implementation guidelines. Of the final 26 papers, the quality of 21 (81%) was assessed as poor. A total of 28 enablers was identified; 8 (29%) were new in this study. A total of 18 barriers was identified; 5 (28%) were newly found. Most of these newly identified factors were related to information and technology. Actionable recommendations for the implementation of AI toward achieving an LHS were provided by mapping the findings to a 3-horizon framework. Conclusions Significant issues exist in implementing AI in health care. Shifting from validating data sets to working with live data is challenging. This review incorporated the identified enablers and barriers into a 3-horizon framework, offering actionable recommendations for implementing AI analytics to achieve an LHS. The findings of this study can assist hospitals in steering their strategic planning toward successful adoption of AI.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3