Therapist Feedback and Implications on Adoption of an Artificial Intelligence–Based Co-Facilitator for Online Cancer Support Groups: Mixed Methods Single-Arm Usability Study

Author:

Leung Yvonne WORCID,Ng SteveORCID,Duan LaurenORCID,Lam ClaireORCID,Chan KenithORCID,Gancarz MathewORCID,Rennie HeatherORCID,Trachtenberg LianneORCID,Chan Kai PORCID,Adikari AchiniORCID,Fang LinORCID,Gratzer DavidORCID,Hirst GraemeORCID,Wong JiahuiORCID,Esplen Mary JaneORCID

Abstract

BackgroundThe recent onset of the COVID-19 pandemic and the social distancing requirement have created an increased demand for virtual support programs. Advances in artificial intelligence (AI) may offer novel solutions to management challenges such as the lack of emotional connections within virtual group interventions. Using typed text from online support groups, AI can help identify the potential risk of mental health concerns, alert group facilitator(s), and automatically recommend tailored resources while monitoring patient outcomes.ObjectiveThe aim of this mixed methods, single-arm study was to evaluate the feasibility, acceptability, validity, and reliability of an AI-based co-facilitator (AICF) among CancerChatCanada therapists and participants to monitor online support group participants’ distress through a real-time analysis of texts posted during the support group sessions. Specifically, AICF (1) generated participant profiles with discussion topic summaries and emotion trajectories for each session, (2) identified participant(s) at risk for increased emotional distress and alerted the therapist for follow-up, and (3) automatically suggested tailored recommendations based on participant needs. Online support group participants consisted of patients with various types of cancer, and the therapists were clinically trained social workers.MethodsOur study reports on the mixed methods evaluation of AICF, including therapists’ opinions as well as quantitative measures. AICF’s ability to detect distress was evaluated by the patient's real-time emoji check-in, the Linguistic Inquiry and Word Count software, and the Impact of Event Scale-Revised.ResultsAlthough quantitative results showed only some validity of AICF’s ability in detecting distress, the qualitative results showed that AICF was able to detect real-time issues that are amenable to treatment, thus allowing therapists to be more proactive in supporting every group member on an individual basis. However, therapists are concerned about the ethical liability of AICF’s distress detection function.ConclusionsFuture works will look into wearable sensors and facial cues by using videoconferencing to overcome the barriers associated with text-based online support groups.International Registered Report Identifier (IRRID)RR2-10.2196/21453

Publisher

JMIR Publications Inc.

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3