Predicting Antituberculosis Drug–Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study

Author:

Zhong TaoORCID,Zhuang ZianORCID,Dong XiaoliORCID,Wong Ka HingORCID,Wong Wing TakORCID,Wang JianORCID,He DaihaiORCID,Liu ShengyuanORCID

Abstract

Background Tuberculosis (TB) is a pandemic, being one of the top 10 causes of death and the main cause of death from a single source of infection. Drug-induced liver injury (DILI) is the most common and serious side effect during the treatment of TB. Objective We aim to predict the status of liver injury in patients with TB at the clinical treatment stage. Methods We designed an interpretable prediction model based on the XGBoost algorithm and identified the most robust and meaningful predictors of the risk of TB-DILI on the basis of clinical data extracted from the Hospital Information System of Shenzhen Nanshan Center for Chronic Disease Control from 2014 to 2019. Results In total, 757 patients were included, and 287 (38%) had developed TB-DILI. Based on values of relative importance and area under the receiver operating characteristic curve, machine learning tools selected patients’ most recent alanine transaminase levels, average rate of change of patients’ last 2 measures of alanine transaminase levels, cumulative dose of pyrazinamide, and cumulative dose of ethambutol as the best predictors for assessing the risk of TB-DILI. In the validation data set, the model had a precision of 90%, recall of 74%, classification accuracy of 76%, and balanced error rate of 77% in predicting cases of TB-DILI. The area under the receiver operating characteristic curve score upon 10-fold cross-validation was 0.912 (95% CI 0.890-0.935). In addition, the model provided warnings of high risk for patients in advance of DILI onset for a median of 15 (IQR 7.3-27.5) days. Conclusions Our model shows high accuracy and interpretability in predicting cases of TB-DILI, which can provide useful information to clinicians to adjust the medication regimen and avoid more serious liver injury in patients.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3