Use of a Smart Watch for Early Detection of Paroxysmal Atrial Fibrillation: Validation Study

Author:

Inui TomohikoORCID,Kohno HirokiORCID,Kawasaki YoheiORCID,Matsuura KaoruORCID,Ueda HidekiORCID,Tamura YusakuORCID,Watanabe MichikoORCID,Inage YuichiORCID,Yakita YasunoriORCID,Wakabayashi YutakaORCID,Matsumiya GoroORCID

Abstract

Background Wearable devices with photoplethysmography (PPG) technology can be useful for detecting paroxysmal atrial fibrillation (AF), which often goes uncaptured despite being a leading cause of stroke. Objective This study is the first part of a 2-phase study that aimed at developing a method for immediate detection of paroxysmal AF using PPG-integrated wearable devices. In this study, the diagnostic performance of 2 major smart watches, Apple Watch Series 3 and Fitbit (FBT) Charge HR Wireless Activity Wristband, each equipped with a PPG sensor, was compared, and the pulse rate data outputted from those devices were analyzed for precision and accuracy in reference to the heart rate data from electrocardiography (ECG) during AF. Methods A total of 40 subjects from patients who underwent cardiac surgery at a single center between September 2017 and March 2018 were monitored for postoperative AF using telemetric ECG and PPG devices. AF was diagnosed using a 12-lead ECG by qualified physicians. Each subject was given a pair of smart watches, Apple Watch and FBT, for simultaneous pulse rate monitoring. The heart rate of all subjects was also recorded on the telemetry system. Time series pulse rate trends and heart rate trends were created and analyzed for trend pattern similarities. Those trend data were then used to determine the accuracy of PPG-based pulse rate measurements in reference to ECG-based heart rate measurements during AF. Results Of the 20 AF events in group FBT, 6 (30%) showed a moderate or higher correlation (cross-correlation function>0.40) between pulse rate trend patterns and heart rate trend patterns. Of the 16 AF events in group Apple Watch (workout [W] mode), 12 (75%) showed a moderate or higher correlation between the 2 trend patterns. Linear regression analyses also showed a significant correlation between the pulse rates and the heart rates during AF in the subjects with Apple Watch. This correlation was not observed with FBT. The regression formula for Apple Watch W mode and FBT was X=14.203 + 0.841Y and X=58.225 + 0.228Y, respectively (where X denotes the mean of all average pulse rates during AF and Y denotes the mean of all corresponding average heart rates during AF), and the coefficient of determination (R2) was 0.685 and 0.057, respectively (P<.001 and .29, respectively). Conclusions In this validation study, the detection precision of AF and measurement accuracy during AF were both better with Apple Watch W mode than with FBT.

Publisher

JMIR Publications Inc.

Subject

Cardiology and Cardiovascular Medicine,Health Informatics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3