An mHealth App for Fibromyalgia-like Post–COVID-19 Syndrome: Protocol for the Analysis of User Experience and Clinical Data

Author:

Blanchard MarcORCID,Backhaus LarsORCID,Ming Azevedo PedroORCID,Hügle ThomasORCID

Abstract

Background Post–COVID-19 syndrome, also referred as “long covid,” describes persisting symptoms after SARS-CoV-2 infection, including myalgia, fatigue, respiratory, or neurological symptoms. Objective symptoms are often lacking, thus resembling a fibromyalgia-like syndrome. Digital therapeutics have shown efficiency in similar chronic disorders such as fibromyalgia, offering specific disease monitoring and interventions such as cognitive behavioral therapy or physical and respiratory exercise guidance. Objective This protocol aims to study the requirements and features of a new mobile health (mHealth) app among patients with fibromyalgia-like post–COVID-19 syndrome in a clinical trial. Methods We created a web application prototype for the post–COVID-19 syndrome called “POCOS,” as a web-based rehabilitation tool aiming to improve clinical outcomes. Patients without organ damage or ongoing inflammation will be included in the study. App use will be assessed through user experience questionnaires, focus groups, and clinical data analysis. Subsequently, we will analyze cross-sectional and longitudinal clinical data. Results The developed mHealth app consists of a clinically adapted app interface with a simplified patient-reported outcome assessment, monitoring of medical interventions, and disease activity as well as web-based instructions for specific physical and respiratory exercises, stress reduction, and lifestyle instructions. The enrollment of participants is expected to be carried out in November 2021. Conclusions User experience plays an important role in digital therapeutics and needs to be clinically tested to allow further improvement. We here describe this process for a new app for the treatment of the fibromyalgia-like post–COVID-19 syndrome and discuss the relevance of the potential outcomes such as natural disease course and disease phenotypes. International Registered Report Identifier (IRRID) PRR1-10.2196/32193

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3