Enabling Health Information Recommendation Using Crowdsourced Refinement in Web-Based Health Information Applications: User-Centered Design Approach and EndoZone Informatics Case Study

Author:

Li WenhaoORCID,O'Hara RebeccaORCID,Hull M LouiseORCID,Slater HelenORCID,Sirohi DikshaORCID,Parker Melissa AORCID,Bidargaddi NiranjanORCID

Abstract

Background In the digital age, search engines and social media platforms are primary sources for health information, yet their commercial interests–focused algorithms often prioritize irrelevant content. Web-based health applications by reputable sources offer a solution to circumvent these biased algorithms. Despite this advantage, there remains a significant gap in research on the effective integration of content-ranking algorithms within these specialized health applications to ensure the delivery of personalized and relevant health information. Objective This study introduces a generic methodology designed to facilitate the development and implementation of health information recommendation features within web-based health applications. Methods We detail our proposed methodology, covering conceptual foundation and practical considerations through the stages of design, development, operation, review, and optimization in the software development life cycle. Using a case study, we demonstrate the practical application of the proposed methodology through the implementation of recommendation functionalities in the EndoZone platform, a platform dedicated to providing targeted health information on endometriosis. Results Application of the proposed methodology in the EndoZone platform led to the creation of a tailored health information recommendation system known as EndoZone Informatics. Feedback from EndoZone stakeholders as well as insights from the implementation process validate the methodology’s utility in enabling advanced recommendation features in health information applications. Preliminary assessments indicate that the system successfully delivers personalized content, adeptly incorporates user feedback, and exhibits considerable flexibility in adjusting its recommendation logic. While certain project-specific design flaws were not caught in the initial stages, these issues were subsequently identified and rectified in the review and optimization stages. Conclusions We propose a generic methodology to guide the design and implementation of health information recommendation functionality within web-based health information applications. By harnessing user characteristics and feedback for content ranking, this methodology enables the creation of personalized recommendations that align with individual user needs within trusted health applications. The successful application of our methodology in the development of EndoZone Informatics marks a significant progress toward personalized health information delivery at scale, tailored to the specific needs of users.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3