A Machine Learning Approach to Support Urgent Stroke Triage Using Administrative Data and Social Determinants of Health at Hospital Presentation: Retrospective Study

Author:

Chen MinORCID,Tan XuanORCID,Padman RemaORCID

Abstract

Background The key to effective stroke management is timely diagnosis and triage. Machine learning (ML) methods developed to assist in detecting stroke have focused on interpreting detailed clinical data such as clinical notes and diagnostic imaging results. However, such information may not be readily available when patients are initially triaged, particularly in rural and underserved communities. Objective This study aimed to develop an ML stroke prediction algorithm based on data widely available at the time of patients’ hospital presentations and assess the added value of social determinants of health (SDoH) in stroke prediction. Methods We conducted a retrospective study of the emergency department and hospitalization records from 2012 to 2014 from all the acute care hospitals in the state of Florida, merged with the SDoH data from the American Community Survey. A case-control design was adopted to construct stroke and stroke mimic cohorts. We compared the algorithm performance and feature importance measures of the ML models (ie, gradient boosting machine and random forest) with those of the logistic regression model based on 3 sets of predictors. To provide insights into the prediction and ultimately assist care providers in decision-making, we used TreeSHAP for tree-based ML models to explain the stroke prediction. Results Our analysis included 143,203 hospital visits of unique patients, and it was confirmed based on the principal diagnosis at discharge that 73% (n=104,662) of these patients had a stroke. The approach proposed in this study has high sensitivity and is particularly effective at reducing the misdiagnosis of dangerous stroke chameleons (false-negative rate <4%). ML classifiers consistently outperformed the benchmark logistic regression in all 3 input combinations. We found significant consistency across the models in the features that explain their performance. The most important features are age, the number of chronic conditions on admission, and primary payer (eg, Medicare or private insurance). Although both the individual- and community-level SDoH features helped improve the predictive performance of the models, the inclusion of the individual-level SDoH features led to a much larger improvement (area under the receiver operating characteristic curve increased from 0.694 to 0.823) than the inclusion of the community-level SDoH features (area under the receiver operating characteristic curve increased from 0.823 to 0.829). Conclusions Using data widely available at the time of patients’ hospital presentations, we developed a stroke prediction model with high sensitivity and reasonable specificity. The prediction algorithm uses variables that are routinely collected by providers and payers and might be useful in underresourced hospitals with limited availability of sensitive diagnostic tools or incomplete data-gathering capabilities.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3