Improving Emergency Department Patient-Physician Conversation Through an Artificial Intelligence Symptom-Taking Tool: Mixed Methods Pilot Observational Study

Author:

Scheder-Bieschin JustusORCID,Blümke BibianaORCID,de Buijzer ErwinORCID,Cotte FabienneORCID,Echterdiek FabianORCID,Nacsa JúliaORCID,Ondresik MartaORCID,Ott MatthiasORCID,Paul GregorORCID,Schilling TobiasORCID,Schmitt AnneORCID,Wicks PaulORCID,Gilbert StephenORCID

Abstract

Background Establishing rapport and empathy between patients and their health care provider is important but challenging in the context of a busy and crowded emergency department (ED). Objective We explore the hypotheses that rapport building, documentation, and time efficiency might be improved in the ED by providing patients a digital tool that uses Bayesian reasoning–based techniques to gather relevant symptoms and history for handover to clinicians. Methods A 2-phase pilot evaluation was carried out in the ED of a German tertiary referral and major trauma hospital that treats an average of 120 patients daily. Phase 1 observations guided iterative improvement of the digital tool, which was then further evaluated in phase 2. All patients who were willing and able to provide consent were invited to participate, excluding those with severe injury or illness requiring immediate treatment, with traumatic injury, incapable of completing a health assessment, and aged <18 years. Over an 18-day period with 1699 patients presenting to the ED, 815 (47.96%) were eligible based on triage level. With available recruitment staff, 135 were approached, of whom 81 (60%) were included in the study. In a mixed methods evaluation, patients entered information into the tool, accessed by clinicians through a dashboard. All users completed evaluation Likert-scale questionnaires rating the tool’s performance. The feasibility of a larger trial was evaluated through rates of recruitment and questionnaire completion. Results Respondents strongly endorsed the tool for facilitating conversation (61/81, 75% of patients, 57/78, 73% of physician ratings, and 10/10, 100% of nurse ratings). Most nurses judged the tool as potentially time saving, whereas most physicians only agreed for a subset of medical specialties (eg, surgery). Patients reported high usability and understood the tool’s questions. The tool was recommended by most patients (63/81, 78%), in 53% (41/77) of physician ratings, and in 76% (61/80) of nurse ratings. Questionnaire completion rates were 100% (81/81) by patients and 96% (78/81 enrolled patients) by physicians. Conclusions This pilot confirmed that a larger study in the setting would be feasible. The tool has clear potential to improve patient–health care provider interaction and could also contribute to ED efficiency savings. Future research and development will extend the range of patients for whom the history-taking tool has clinical utility. Trial Registration German Clinical Trials Register DRKS00024115; https://drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00024115

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3