Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation

Author:

Li QiaoqinORCID,Liu YongguoORCID,Zhu JiajingORCID,Chen ZhiORCID,Liu LangORCID,Yang ShangmingORCID,Zhu GuanyiORCID,Zhu BinORCID,Li JuanORCID,Jin RongjiangORCID,Tao JingORCID,Chen LidianORCID

Abstract

Background For rehabilitation training systems, it is essential to automatically record and recognize exercises, especially when more than one type of exercise is performed without a predefined sequence. Most motion recognition methods are based on feature engineering and machine learning algorithms. Time-domain and frequency-domain features are extracted from original time series data collected by sensor nodes. For high-dimensional data, feature selection plays an important role in improving the performance of motion recognition. Existing feature selection methods can be categorized into filter and wrapper methods. Wrapper methods usually achieve better performance than filter methods; however, in most cases, they are computationally intensive, and the feature subset obtained is usually optimized only for the specific learning algorithm. Objective This study aimed to provide a feature selection method for motion recognition of upper-limb exercises and improve the recognition performance. Methods Motion data from 5 types of upper-limb exercises performed by 21 participants were collected by a customized inertial measurement unit (IMU) node. A total of 60 time-domain and frequency-domain features were extracted from the original sensor data. A hybrid feature selection method by combining filter and wrapper methods (FESCOM) was proposed to eliminate irrelevant features for motion recognition of upper-limb exercises. In the filter stage, candidate features were first selected from the original feature set according to the significance for motion recognition. In the wrapper stage, k-nearest neighbors (kNN), Naïve Bayes (NB), and random forest (RF) were evaluated as the wrapping components to further refine the features from the candidate feature set. The performance of the proposed FESCOM method was verified using experiments on motion recognition of upper-limb exercises and compared with the traditional wrapper method. Results Using kNN, NB, and RF as the wrapping components, the classification error rates of the proposed FESCOM method were 1.7%, 8.9%, and 7.4%, respectively, and the feature selection time in each iteration was 13 seconds, 71 seconds, and 541 seconds, respectively. Conclusions The experimental results demonstrated that, in the case of 5 motion types performed by 21 healthy participants, the proposed FESCOM method using kNN and NB as the wrapping components achieved better recognition performance than the traditional wrapper method. The FESCOM method dramatically reduces the search time in the feature selection process. The results also demonstrated that the optimal number of features depends on the classifier. This approach serves to improve feature selection and classification algorithm selection for upper-limb motion recognition based on wearable sensor data, which can be extended to motion recognition of more motion types and participants.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3