Machine Learning and Causal Approaches to Predict Readmissions and Its Economic Consequences Among Canadian Patients With Heart Disease: Retrospective Study

Author:

Rajkumar EthanORCID,Nguyen KevinORCID,Radic SandraORCID,Paa JubelleORCID,Geng QiyangORCID

Abstract

Background Unplanned patient readmissions within 30 days of discharge pose a substantial challenge in Canadian health care economics. To address this issue, risk stratification, machine learning, and linear regression paradigms have been proposed as potential predictive solutions. Ensemble machine learning methods, such as stacked ensemble models with boosted tree algorithms, have shown promise for early risk identification in specific patient groups. Objective This study aims to implement an ensemble model with submodels for structured data, compare metrics, evaluate the impact of optimized data manipulation with principal component analysis on shorter readmissions, and quantitatively verify the causal relationship between expected length of stay (ELOS) and resource intensity weight (RIW) value for a comprehensive economic perspective. Methods This retrospective study used Python 3.9 and streamlined libraries to analyze data obtained from the Discharge Abstract Database covering 2016 to 2021. The study used 2 sub–data sets, clinical and geographical data sets, to predict patient readmission and analyze its economic implications, respectively. A stacking classifier ensemble model was used after principal component analysis to predict patient readmission. Linear regression was performed to determine the relationship between RIW and ELOS. Results The ensemble model achieved precision and slightly higher recall (0.49 and 0.68), indicating a higher instance of false positives. The model was able to predict cases better than other models in the literature. Per the ensemble model, readmitted women and men aged 40 to 44 and 35 to 39 years, respectively, were more likely to use resources. The regression tables verified the causality of the model and confirmed the trend that patient readmission is much more costly than continued hospital stay without discharge for both the patient and health care system. Conclusions This study validates the use of hybrid ensemble models for predicting economic cost models in health care with the goal of reducing the bureaucratic and utility costs associated with hospital readmissions. The availability of robust and efficient predictive models, as demonstrated in this study, can help hospitals focus more on patient care while maintaining low economic costs. This study predicts the relationship between ELOS and RIW, which can indirectly impact patient outcomes by reducing administrative tasks and physicians’ burden, thereby reducing the cost burdens placed on patients. It is recommended that changes to the general ensemble model and linear regressions be made to analyze new numerical data for predicting hospital costs. Ultimately, the proposed work hopes to emphasize the advantages of implementing hybrid ensemble models in forecasting health care economic cost models, empowering hospitals to prioritize patient care while simultaneously decreasing administrative and bureaucratic expenses.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3